4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
Липидами (от греч. lipos – жир) называют сложную смесь органических соединений с близкими физико–химическими свойствами, которая содержится в растениях, животных и микроорганизмах. Липиды широко распространены в природе и вместе с белками и углеводами составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки. Они широко используются при получении многих продуктов питания, являются важными компонентами пищевого сырья, полупродуктов и готовых пищевых продуктов, во многом определяя их пищевую и биологическую полноценность и вкусовые качества.
Липиды нерастворимы в воде (гидрофобны*), хорошо растворимы в органических растворителях (бензине, диэтиловом эфире, хлороформе и др.).
В растениях липиды накапливаются, главным образом, в семенах и плодах. Ниже приведено содержание липидов (%) в разных культурах.
Подсолнечник (семянка) | 30–58 |
Хлопчатник (семена) | 20–29 |
Соя (семена) | 15–25 |
Лен (семена) | 30–48 |
Арахис (ядро) | 50–61 |
Маслины (мякоть) | 28–50 |
Конопля (семена) | 32–38 |
Тунг (ядро плода) | 48–66 |
Рапс (семена) | 45–48 |
187
Горчица (семена) | 25–49 |
Клещевина (семена) | 35–59 |
Пшеница (зерновка) | 2,7 |
Рожь (зерновка) | 2,5 |
Кукуруза (зерновка) | 5,6 |
Рис (зерновка) | 2,9 |
Овес (зерновка) | 7,2 |
Просо (зерновка) | 4,5 |
Гречиха | 3,8 |
Арбуз (семена) | 14–45 |
Какао (бобы) | 49–57 |
Кокосовая пальма (копра) | 65–72 |
Кедр (ядро ореха) | 26–28 |
У животных и рыб липиды концентрируются в подкожных, мозговой и нервной тканях и тканях, окружающих важные органы (сердце, почки). Содержание липидов в тушке рыб (осетров) может достигать 20–25%, сельди – 10%, у туш наземных животных оно сильно колеблется: 33% (свинина), 9,8% (говядина), 3,0% (поросята). В молоке оленя – 17–18%, козы – 5,0%, коровы – 3,5–4,0% липидов. Содержание липидов в отдельных видах микроорганизмов может достигать 60%. Содержание липидов в растениях зависит от сорта, места и условий их произрастания; у животных – от вида, состава корма, условий содержания и т.д.
По химическому строению липиды являются производными жирных кислот, спиртов, альдегидов, построенных с помощью сложноэфирной, простой эфирной, фосфоэфирной, гликозидной связей. Липиды делят на две основные группы: простые и сложные липиды*. К простым нейтральным липидам (не содержащим атомов азота, фосфора, серы) относят производные высших жирных кислот и спиртов: глицеролипиды, воски, эфиры холестерина, гликолипиды и другие соединения. Существуют и другие классификации липидов. По мнению отдельных авторов, в эту группу органических соединений следует включить изопреноиды (терпены и их производные) и стероиды. Молекулы сложных липидов содержат в своем составе не только остатки высокомолекулярных карбоновых кислот, но и фосфорную или серную кислоты.
По строению и способности к гидролизу липиды разделяют на омыляемые и неомыляемые. Омыляемые липиды при гидролизе образуют несколько структурных компонентов, а при взаимодействии с щелочами – соли жирных кислот (мыла).
188
Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицерины. Ацилглицерины (или глицериды) – это сложные эфиры глицерина и высших карбоновых кислот (см. табл. 4.1). Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров входят, главным образом, триацилглицерины (I), а также диацилглицерины (II) и моноацилглицерины (III):
где R, R', R" – углеводородные радикалы.
Триацилглицерины (ТАГ), молекулы которых содержат одинаковые остатки жирных кислот, называются простыми, в противном случае – смешанными. Природные жиры и масла содержат, главным образом, смешанные триацилглицерины. Чистые ацилглицерины – бесцветные вещества без вкуса и запаха. Окраска, запах и вкус природных жиров определяются наличием в них специфических примесей, характерных для каждого вида жира. Температуры плавления и застывания ацилглицеринов не совпадают, что обусловлено наличием нескольких кристаллических модификаций. По современным представлениям, молекулы триацилглицеринов в кристаллах в зависимости от ориентации кислотных групп могут иметь форму вилки 1, кресла 2, стержня 3 (см. рис. 4.1).
Температура плавления триацилглицеринов, содержащих остатки транс–ненасыщенных кислот, выше, чем у ацилглицеринов, содержащих остатки цис–ненасыщенных кислот с тем же числом атомов углерода. Каждое масло характеризуется специфическим коэффициентом преломления (тем больше, чем выше ненасыщенность жирных кислот, входящих в его состав, и молекулярная масса).
Смеси индивидуальных ацилглицеринов либо образуют твердые растворы (то есть смешанные кристаллы), либо дают "эвтектики" (механические смеси кристаллов). Эвтектическая смесь имеет температуру плавления более низкую, чем исходные компоненты по отдельности.
Разница в температурах плавления глицеридов разного состава лежит в основе демаргаринизации – выделения из смеси наиболее
189
Таблица 4.1. Основные карбоновые кислоты, входящие в состав природных масел и жиров
Кислота | Формула | Условное обозначение (символ)* |
Насыщенные кислоты | ||
Лауриновая | СН3–(СН2)10–СООН | C012 |
Миристиновая | СН3–(СН2)12–СООН | C014 |
Пальмитиновая | СН3–(СН2),4–СООН | C016 |
Стеариновая | CH3–(CH2) 16–СООН | C018 |
Арахиновая | СН3–(СН2)18–СООН | C020 |
Ненасыщенные кислоты | ||
Олеиновая | СН3–(СН2)7–СН=СН–(СН2)7–СООН | С118–9–цис |
Эруковая | СН3–(СН2)7–СН=СН–(СН2)11–СООН | С122–13–цис |
Линолевая | СН3–(СН2)4–СН=СН–СН2–СН=СН–(СН2)7–СООН | С218–9–цис, 12–цис |
Линоленовая | СН3–(СН2–СН=СН)3–(СН2)7–СООН | С318–9–цис, 12–цис, 15–цис |
Арахидоновая | СН3–(СН2)3–(СН2–СН=СН)4–(СН2)3 –COOH | С420–5–цис, 8–цис, 11–цис, 14–цис |
Оксикислоты | ||
Рициноленовая | СН3–(СН2)5–СНОН–СН2–СН=СН–(СН2)7–СООН | С118–9–цис, 12–ол |
* В символ входят число атомов углерода и количество двойных связей между углеродными атомами в молекуле кислоты, номер первого ненасыщенного атома углерода, конфигурация.
Рис. 4.1. Возможные конфигурации и характер упаковки молекул триацилглицеринов в кристаллах
190
высокоплавкой фракции глицеридов (получение хлопкового пальмитина, пальмового стеарина). Плотность триацилглицеринов 900– 960 кг/м3 (при 15°C); она уменьшается с ростом длины цепи жирно–кислотных остатков и возрастает с увеличением числа изолированных двойных связей.
Другой важной группой простых липидов являются воски. Восками называют сложные эфиры высших одноосновных карбоновых кислот (С0]8–С030) и одноатомных (содержащих одну группу ОН) высокомолекулярных (с 18–30 атомами углерода) спиртов:
где R, R' – углеводородные радикалы.
Воски широко распространены в природе. В растениях они покрывают тонким слоем листья, стебли, плоды, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Содержание восков в зерне и плодах невелико. В оболочках семян подсолнечника содержится до 0,2% восков от массы оболочки, в семенах сои – 0,01%, риса – 0,05%. Воски – важный компонент воскового налета виноградной ягоды – прюина.
В состав простых липидов растительных масел и жиров входят гликолипиды. Гликолипидами называется большая и разнообразная по строению группа нейтральных липидов, в состав которых входят остатки моноз. Они широко (обычно в небольших количествах) содержатся в растениях (липиды пшеницы, овса, кукурузы, подсолнечника), животных и микроорганизмах. Гликолипиды выполняют структурные функции, участвуют в построении мембран, им принадлежит важная роль в формировании клейковинных белков пшеницы, определяющих хлебопекарное достоинство муки. Чаще всего в построении молекул гликолипидов участвуют D–галактоза, D–глюкоза, D–манноза.
191
где R, R' – углеводородные радикалы.
Важнейшими представителями сложных липидов являются фосфолипиды. Молекулы фосфолипидов построены из остатков спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты (H3PO4), а также содержат азотистые основания (чаще всего холин [HO–CH2–CH2–(CH3)3N]+OH или этаноламин HO–CH2–CH2–NH2), остатки аминокислот и некоторых других соединений. Общие формулы фосфолипидов содержащих остатки глицерина и сфингозина имеет следующий вид:
где R, R' – углеводородные радикалы, X = –H, –CH2–CH2–N+(CH3J3, – CH2–CH2–N+H3,–CH2–CHOH–CH2OH–CH2CH(NH2)COOH.
В молекуле фосфолипидов имеются заместители двух типов: гидрофильные и гидрофобные. В качестве гидрофильных (полярных) группировок выступают остатки фосфорной кислоты и азотистого основания ("голова"), а гидрофобных (неполярных) – углеводородные радикалы ("хвосты"). Пространственная структура фосфолипидов представлена на рис. 4.2.
Фосфолипиды (фосфатиды) – обязательные компоненты растений. Ниже приведено содержание фосфолипидов в различных культурах (в %):
Соя | 1,8 |
Хлопчатник | 1,7 |
192
Подсолнечник | 1,7 |
Клещевина | 0,3 |
Лен | 0,6 |
Пшеница | 0,54 |
Рожь | 0,6 |
Кукуруза | 0,9 |
Состав жирных кислот фосфолипидов и ацилглицеринов, выделенных из одного и того же сырья, неидентичен. Так, в высокоэруковых сортах рапсового масла содержится около 60% эруковой кислоты, в фосфолипидах – 11–12%. Подавляющее большинство фосфолипидов имеет в своем составе остатки одной насыщенной (обычно в положении 1) и одной ненасыщенной (в положении 2) кислоты.
Несмотря на рассмотренное выше структурное многообразие, молекулы большинства фосфолипидов построены по общему принципу. В их состав входят, с одной стороны, гидрофобные, отличающиеся низким сродством к воде, липофильные углеводородные остатки, с другой – гидрофильные группы. Они получили название "полярных головок".
Построенные таким образом амфифильные (обладающие двойным сродством) молекулы липидов легко ориентируются. Гидрофобные хвосты (рис. 4.2) стараются попасть в масляную фазу, гидрофильные группы создают границу раздела между водой и гидрофобной фазой.
В маслах фосфолипиды в зависимости от концентрации могут присутствовать в виде индивидуальных молекул, а также в виде групп ассоциированных молекул – мицелл (рис. 4.3).При низкой концентрации получаются сферические мицеллы, в которых полярные части молекул образуют внешний слой, а гидрофобные – внутренний; при повышенной концентрации мицеллы группируются в длинные цилиндры. При дальнейшем росте концентрации образуется сферический тип жидкокристаллической структуры – ламеллярная (слоистая), состоящая из бимолекулярных слоев липидов, разделенных слоями воды. Последующее объединение мицелл приводит к выпадению их в виде осадка (фосфатидная эмульсия, "ФУЗ").
Рис. 4.2. Схема наиболее вероятной структуры фосфолипидов
193
Эта особенность фосфолипидов используется для их выделения. Особенности перехода одной структуры в другую определяются не только концентрацией фосфолипидов, но и их составом, температурой и т. д.
Рис. 4.3. Структура мицелл фосфолипидов в жировой и водной фазах и ориентация фосфолипидов на поверхности разделов фаз: сферические (а) и пластинчатые (б) мицеллы фосфолипидов в жире; ориентация отдельных молекул (в) и монослоя фосфолипидов (г) на границе раздела фаз жир (масло)–вода;·сферические (д) и пластинчатые (е) мицеллы фосфолипидов в воде
Фосфолипиды вместе с белками и углеводами участвуют в построении мембран (перегородок) клеток и субклеточных структур (органелл), выполняя роль несущих конструкций мембран, регулируют поступление в клетку и ее структуры разнообразных соединений. Липиды по их функциям в организме часто делят на две группы – запасные (резервные) и структурные (протоплазматические). Это деление условное, но оно широко применяется. Отдельные авторы, подчеркивая защитные функции липидов, выделяют некоторые из них в особую группу (например, воски).
Запасные липиды, в основном жиры (ацилглицерины), обладая высокой калорийностью, являются энергетическим и строительным резервом организма, который используется им при недостатке питания и заболеваниях. Высокая калорийность жира позволяет организму в экстремальных ситуациях существовать за счет его запасов ("жировых депо") в течение нескольких недель. До 90% всех видов растений содержат запасные липиды, главным образом, в семенах. Запасные липиды являются защитными веществами, помогающими растению переносить неблагоприятное воздействие внешней среды, например, низкие температуры. Запасные липиды животных и рыб, концентрируясь в подкожной жировой ткани, защищают
194
организм от травм. Воски, которые выполняют защитные функции, также могут быть условно отнесены к защитным липидам. Запасные липиды у большинства растений и животных являются основной по массе группой липидов (иногда до 95–96%) и относительно легко извлекаются из жиросодержащего материала неполярными растворителями ("свободные липиды").
Структурные липиды (в первую очередь, фосфолипиды) образуют сложные комплексы с белками (липопротеиды), углеводами, из которых построены мембраны клеток и клеточных структур, и участвуют в разнообразных сложных процессах, протекающих в клетках. По массе они составляют значительно меньшую группу липидов (в масличных семенах 3–5%). Это трудноизвлекаемые "связанные" и "прочносвязанные" липиды. Для их извлечения необходимо предварительно разрушить их связь с белками, углеводами и другими компонентами клетки. Связанные липиды выделяются гидрофильными полярными растворителями или их смесями (хлороформ–метанол, хлороформ–этанол), которые разрушают некоторые белково–липидные, гликолипидные соединения. Прочносвязанные липиды извлекаются после обработки липидсодержащего материала спиртовым раствором щелочи при кипячении для разрушения прочных комплексов липидов с нелипидными компонентами. При этом может происходить гидролиз отдельных групп липидов и омыление жирных кислот щелочью. При извлечении липидов из масличного сырья в масло переходит большая группа сопутствующих жирам жирорастворимых веществ: пигменты, жирорастворимые витамины, изопреноиды, в том числе стерины и некоторые другие соединения. Они играют большую роль в пищевой технологии и влияют на пищевую и физиологическую ценность полученных продуктов питания. Извлекаемая из семян смесь, состоящая из разных групп липидов и растворенных в них сопутствующих веществ, получила название сырого жира (см. рис. 4.4).
Рис. 4.4. Основные компоненты сырого жира
195
Среди жирорастворимых пигментов – веществ, определяющих окраску масел и жиров, – наиболее распространены каротиноиды и хлорофиллы. В хлопковых семенах содержится пигмент госсипол. Госсипол и продукты его превращения окрашивают хлопковые масла в темно–желтый или коричневый цвет. Госсипол, содержащийся в семенах, листьях, стеблях хлопчатника, – токсичное вещество. Его содержание в ядре семян большинства промышленных сортов хлопчатника колеблется от 0,14 до 2,5%. По структуре госсипол представляет собой димер нафталина, содержащий гидроксильные, альдегидные, метильные и изопропильные заместители:
При хранении и нагревании нерафинированных хлопковых масел госсипол образует целый ряд соединений, обусловливающих их темную окраску.
Каротиноиды – это растительные красно–желтые пигменты, определяющие окраску ряда жиров, а также овощей и фруктов, яичного желтка и многих других продуктов. По своей химической природе это углеводороды C40H56 – каротины и их кислородсодержащие производные. Среди них необходимо отметить β–каротин:
Помимо красящих свойств, отдельные каротиноиды обладают про–витаминными свойствами, так как распадаясь в живом организме, они превращаются в витамин А. Другой группой природных жирорастворимых пигментов, придающих зеленую окраску маслам и жирам, а также многим овощам (лук, салат, укроп и т. д.), являются хлорофиллы (подробно эти соединения рассмотрены в гл. 9). Состав и роль
196
жирорастворимых витаминов см. в гл. 6. Среди сопутствующих жирам неомыляемых веществ важное место занимают циклические спирты и их эфиры – стеролы и стерины.
Стерины – алициклические вещества, входящие в группу стероидов, обычно они представляют собой кристаллические одноатомные спирты (стеролы) или их эфиры (стериды). Различают зоостерины, выделяемые из животных объектов, фитостерины (из растений), микостерины, выделяемые из грибов. Стерины имеют в своей основе структуру пергидроциклопентанофенантрена.
В настоящем разделе мы остановимся только на некоторых представителях этой группы.
В молекуле стеринов (см. формулу) в положении 3 находится гидроксильная (ОН) группа и разветвленная углеродная цепь в положении 17. Нерастворимые в воде, они хорошо растворимы в жирах.
Ниже приведено содержание стеринов (в % от массы масла) в различных культурах.
Хлопчатник | 1,60 |
Соя | 0,35 |
Рапс | 0,30 |
Лен | 0,40 |
Арахис | 0,25 |
Стерины и их производные, несмотря на их невысокое содержание, играют исключительно важную роль в жизни всех живых организмов. В виде сложных комплексов с белками они входят в состав протоплазмы и мембран, регулируют обмен веществ в клетке.
197
Типичными представителями растительных стеролов, содержащихся в сыром жире, являются брассикастерин, стигмастерин, кампестерин, β–ситостерин:
В сыром жире они обычно встречаются в виде эфиров пальмитиновой, олеиновой, линолевой и линоленовой кислот.
Холестерин обнаружен в тканях всех животных и отсутствует, или присутствует в незначительном количестве, в растениях.
Он является структурным компонентом клетки, участвует в обмене желчных кислот, гормонов; 70–80% холестерина в организме человека синтезируется в печени и других тканях. Содержание холестерина (в %) в масле и других продуктах питания приведено ниже:
Масло сливочное | 0,17–0,21 |
198
Яйца | 0,57 |
Сыры | 0,28–1,61 |
Мясо | 0,06–0,10 |
В маслах и жирах, выделенных из различных объектов, содержатся насыщенные и ненасыщенные углеводороды C10–C40 различного строения. Большая часть их – изопреноиды (молекулы которых построены из различного числа остатков изопрена); к ним относятся и приведенные выше каротиноиды, сквален (углеводород C30H50). Иногда к ним относят и стерины.
Жиры нестойки при хранении. Они являются наиболее лабильными компонентами пищевого сырья и готовых пищевых продуктов. Нестойкость жиров – следствие особенностей их химического строения. Превращения ацилглицеринов можно разделить на реакции, протекающие с участием сложноэфирных групп, и на реакции, протекающие с участием углеводородных радикалов.
199
* Гидрофобность – "боязнь воды", вещества не взаимодействуют с водой.
* Эти вопросы подробно изучаются в курсе органической химии.
187 :: 188 :: 189 :: 190 :: 191 :: 192 :: 193 :: 194 :: 195 :: 196 :: 197 :: 198 :: 199 :: Содержание
199 :: 200 :: 201 :: Содержание
- Глава 1. Химия пищевых веществ и питание человека 10
- Глава 2. Белковые вещества 16
- Глава 4. Липиды (жиры и масла) 144
- Глава 9. Пищевые и биологически активные добавки 273
- Глава 10. Вода 359
- Глава 11. Безопасность пищевых продуктов 384
- Глава 12. Основы рационального питания 439
- Глава 1. Химия пищевых веществ и питание человека
- Глава 2. Белковые вещества
- 2.1. Белки в питании человека. Проблема белкового дефицита на земле
- 2.2. Белково-калорийная недостаточность и ее последствия. Пищевые аллергии
- 2.3. Аминокислоты и их некоторые функции в организме
- 2.4. Незаменимые аминокислоты. Пищевая и биологическая ценность белков
- 2.5. Строение пептидов и белков. Физиологическая роль пептидов
- 2.6 Белки пищевого сырья
- 2.7. Новые формы белковой пищи. Проблема обогащения белков лимитирующими аминокислотами
- 2.8. Функциональные свойства белков
- 2.9. Превращения белков в технологическом потоке
- 2.10. Качественное и количественное определение белка
- Глава 3. Углеводы
- 3.1. Общая характеристика углеводов
- 3.2. Физиологическое значение углеводов
- 3.3. Превращения углеводов при производстве пищевых продуктов
- 3.4. Функции моносахаридов и олигосахаридов в пищевых продуктах
- 3.5. Функции полисахаридов в пищевых продуктах
- 3.6. Методы определения углеводов в пищевых продуктах
- Глава 4. Липиды (жиры и масла)
- 4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
- 4.2. Реакции ацилглицеринов с участием сложноэфирных групп
- 4.3. Реакции ацилглицеринов с участием углеводородных радикалов
- 4.4. Свойства и превращения глицерофосфолипидов
- 4.5. Методы выделения липидов из сырья и пищевых продуктов и их анализ
- 4.6. Пищевая ценность масел и жиров
- 4.7. Превращения липидов при производстве продуктов питания
- Глава 5. Минеральные вещества
- 5.1. Роль минеральных веществ в организме человека
- 5.2. Роль отдельных минеральных элементов
- 5.3. Влияние технологической обработки на минеральный состав пищевых продуктов
- 5.4. Методы определения минеральных веществ
- Глава 6. Витамины
- 6.1. Водорастворимые витамины
- 6.2. Жирорастворимые витамины
- 6.3. Витаминоподобные соединения
- 6.4. Витаминизация продуктов питания
- Глава 7. Пищевые кислоты
- 7.1. Общая характеристика кислот пищевых объектов
- 7.3. Пищевые кислоты и их влияние на качество продуктов
- 7.4. Регуляторы кислотности пищевых систем
- 7.5. Пищевые кислоты в питании
- 7.6. Методы определения кислот в пищевых продуктах
- Глава 8. Ферменты
- 8.1. Общие свойства ферментов
- 8.2. Классификация и номенклатура ферментов
- 8.3. Применение ферментов в пищевых технологиях
- 8.4. Иммобилизованные ферменты
- 8.5. Ферментативные методы анализа пищевых продуктов
- Глава 9. Пищевые и биологически активные добавки
- 9.1. Общие сведения о пищевых добавках
- 9.2. Вещества, улучшающие внешний вид пищевых продуктов
- 9.3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов
- 9.4. Вещества, влияющие на вкус и аромат пищевых продуктов
- 9.5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья и готовых продуктов
- 9.6. Биологически активные добавки
- Глава 10. Вода
- 10.1. Физические и химические свойства воды и льда
- 10.2. Свободная и связанная влага в пищевых продуктах
- 10.3. Активность воды
- 10.4. Роль льда в обеспечении стабильности пищевых продуктов
- 10.5. Методы определения влаги в пищевых продуктах
- Глава 11. Безопасность пищевых продуктов
- 11.1. Классификация чужеродных веществ и пути их поступления в продукты
- 11.2. Окружающая среда - основной источник загрязнения сырья и пищевых продуктов
- 11.3. Природные токсиканты
- 11.4. Антиалиментарные факторы питания
- 11.5. Метаболизм чужеродных соединений
- 11.6. Фальсификация пищевых продуктов
- Глава 12. Основы рационального питания
- 12.1. Физиологические аспекты химии пищевых веществ
- 12.2. Питание и пищеварение
- 12.3. Теории и концепции питания
- 12.4. Рекомендуемые нормы потребления пищевых веществ и энергии
- 12.5. Пищевой рацион современного человека. Основные группы пищевых продуктов
- 12.6. Концепция здорового питания. Функциональные ингредиенты и продукты