6. Пищевые добавки, замедляющие микробную и окислительную порчу пищевого сырья и готовых продуктов
Наиболее целесообразно использование антиокислителей для сохранения жировых продуктов, способных окисляться на свету под влиянием кислорода и тепла до гидропероксидов. В ходе дальнейшего окисления последних образуются токсичные альдегиды, кетоны, низкомолекулярные жирные кислоты, различные продукты полимеризации и другие соединения. Для предотвращения окислительной порчи жиров применяются антиоксиданты и их синергисты.
Эти пищевые добавки включают три подкласса с учетом их функций:
антиокислители;
синергисты антиокислителей;
комплексообразователи.
Ряд соединений — лецитины (Е 322), лактаты (Е 325, Е 326) и др. — выполняют комплексные функции. Перечень антиокислителей, разрешенных к применению в Российской Федерации, приведен в таблице 6.1.
Жировые продукты содержат определенное количество природных антиокислителей, среди которых наибольшее значение имеют токоферолы (витамин Е), которыми особенно богаты растительные масла.
Токоферолы (Е 306, Е 307, Е 308, Е 309) в виде смеси изомеров в больших количествах содержатся в растительных жирах (50 — 100 %): масле пшеничных зародышей, кукурузном, подсолнечном и др. В животных жирах их содержание незначительно. Из смеси токоферолов наибольшую Е-витаминную и наименьшую антиоксидантную активность проявляет ?-токоферол, а ?-токоферол, наоборот, проявляет наименьшую витаминную активность и наибольшую антиоксидантную.
Токоферолы хорошо растворимы в маслах, устойчивы к действию высокой температуры, их потери при технологической обработке невелики. Они являются важнейшими природными антиоксидантами.
К природным антиокислителям относятся и эфиры галловой кислоты, некоторые флавоны (кверцетин), гваяковая кислота. Аскорбиновая кислота (витамин С) также обладает антиокислительными свойствами. Однако наряду с лимонной кислотой ее больше рассматривают как синергист антиокислителей, т.е. как вещество, усиливающее действие последних.
Аскорбиновая кислота и ее производные (Е 300) используются для предотвращения окислительной порчи пищевых жиров, в частности маргарина, топленых жиров, а также других продуктов. Представляет собой кристаллическое вещество белого цвета, хорошо растворяющееся в воде и спирте. Легко разрушается при нагревании и воздействии кислорода воздуха, неустойчива в щелочной среде. Аскорбиновая кислота используется также для предотвращения образования N-нитрозаминов из нитратов и нитритов в колбасном и консервном производстве. Кроме того, введение аскорбиновой кислоты повышает пищевую ценность продуктов питания.
Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам установил безусловно допустимую суточную дозу для человека в пределах 0 — 2,5 мг и условно допустимую — 2,5 — 7,5 мг на 1 кг массы тела. Это значительно выше количества, которое добавляют в продукты в процессе производства.
Аскорбилпальмитат (Е304) и аскорбилстеарат (Е 305) — эфиры аскорбиновой кислоты с пальмитиновой, стеариновой, миристиновой и другими высокомолекулярными жирными кислотами также обладают антиоксидантными свойствами. Эфиры аскорбиновой кислоты не придают ингибируемым жирам посторонних вкуса и запаха, не изменяют их цвет. Особенно они эффективны при совместном использовании с фосфолипидами и ?-токоферолами. Аскорбилпальмитат — антиокислитель, обладающий С-витаминной активностью: 1 г аскорбилпальмитата соответствует по активности 0,425 мг аскорбиновой кислоты. Это вещество в качестве антиоксиданта разрешено в пищевой промышленности во многих странах Европы, но в России запрещено, хотя в зарубежных пищевых продуктах, поступающих по экспорту из Европы, аскорбилпальмитат может обнаруживаться.
Аскорбинат натрия (Е301) вместо аскорбиновой кислоты иногда используют в производстве колбас и изделий из мяса как стабилизатор окраски. Его количество составляет до 500 мг/кг.
Галлаты являются превосходными антиоксидантами. К наиболее распространенным галлатам, или эфирам галловой кислоты, относятся пропилгаллат (Е 310), октилгаллат (Е 311) и додецил-галлат (Е 312). Пропилгаллат представляет собой белый или светло-кремовый мелкий кристаллический порошок без запаха со слегка горьковатым вкусом. В присутствии следов железа придает продуктам сине-фиолетовую окраску, которая может быть устранена или ослаблена при добавлении лимонной кислоты или другого дезактиватора металлов. Октилгаллат и додецилгаллат также представляют собой мелкий кристаллический порошок с горьковатым вкусом, нерастворимый в воде и легко растворимый в жирах. Галлаты широко применяются для предохранения от окисления жиров и жирсодержащих продуктов. Пропилгаллат используют также при производстве бульонных мясных и куриных кубиков.
Гваяковая смола (Е 314) представляет собой нерастворимую в воде аморфную массу, состоящую в значительной мере из ?- и ?-гваяковых кислот. Смола добывается из тропического дерева Guajacum officinalis L. и применяется главным образом в качестве окислителя животных жиров в концентрации 1 — 2 г на 1 кг продукта. В России гваяковая смола как пищевая добавка запрещена к применению. Во многих странах Европы это вещество также не разрешено к применению или не упоминается в официальных документах по пищевым добавкам.
Изоаскорбиновая, или эриторбовая (Е 315), кислота и ее натриевая соль значительно хуже адсорбируются и задерживаются в тканях, чем аскорбиновая кислота. Кроме того, эриторбовая кислота неактивна и быстро выводится из организма. В результате этого она обладает низкой противоцинготной активностью и в значительной степени препятствует поглощению и задержке в тканях аскорбиновой кислоты, если концентрация эриторбовой кислоты хотя бы на один порядок выше, чем аскорбиновой кислоты.
Исследования показали, что суточная доза эриторбовой кислоты 600 мг не оказывает неблагоприятного действия на организм человека.
В качестве искусственных антиоксидантов предложено значительное количество синтетических веществ, среди которых известны о-, n-диполифенолы, эфиры галловой кислоты, пропил-галлат, бутилокситолуол, бутилоксианизол и др. В этих целях используются также додецилгаллат, представляющий собой нормальный додециловый эфир 3,4,5-тригидроксибензойной кислоты.
Наибольшее распространение в мире получили бутилоксианизол и бутилокситолуол, имеющие сходный механизм антиокислительного действия. Эти вещества хорошо растворимы в жирах, нерастворимы в воде и эффективно подавляют процессы окисления жировых компонентов в концентрации 20 — 200 мг на 1 кг продукта. Этими веществами также можно пропитывать упаковочный материал для жиров и изделий, содержащих в значительных количествах жир.
Бутилгидроксианизол (Е 320) используют в пищевой промышленности для замедления окисления животных топленых жиров и соленого шпика. Соединение устойчиво к действию высокой температуры и его можно добавлять в продукты, подвергающиеся варке, сушке, обжариванию и др. Бутилгидроксианизол не растворяется в воде, малотоксичен, всасывается в желудочно-кишечном тракте. При поступлении в организм в повышенных количествах он откладывается в жировых тканях. Активность бутил-гидроксианизола повышается в присутствии других фенольных антиокислителей или синергистов.
На основании проведенных токсикологических исследований Объединенный комитет экспертов ФДО/ВОЗ по пищевым добавкам установил уровень суточной дозы, не вызывающей существенного действия этого вещества, 0,5 % общего количества пищи, что эквивалентно 250 мг на 1 кг массы тела.
Безусловно допустимой суточной дозой бутилгидроксианизола для человека является 0 — 0,5 мг на 1 кг массы, условно допустимой — 0,5 — 2,0 мг/кг. При установлении допустимых доз должно быть учтено наличие других фенольных антиокислителей в пище.
Бутилгидрокситолуол, или ионол (Е 321), также применяют в пищевой промышленности для замедления окисления животных топленых жиров и соленого шпика. Бутилгидрокситолуол не вылет изменения органолептических свойств пищевых жиров, легко всасывается и накапливается в жировых тканях человека.
При проведении токсикологических исследований на животных установлено, что сам бутилгидрокситолуол не оказывает каногенного действия, но усиливает канцерогенность некоторых других химических веществ. Исследования хронической токсичности не выявили специфических признаков интоксикации.
Химическая структура бутилгидрокситолуола предполагает возможность задержки процессов обмена, а жировая нагрузка в диете усиливает его токсичность.
Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам установил для бутилгидрокситолуола только условно допустимую суточную дозу, равную 0 — 0,5 мг на 1 кг массы человека.
Существенным дополнением к антиокислителям служат синергисты — добавки, усиливающие антиокислительное действие. Наиболее важными синергистами являются лимонная кислота и ее эфиры моноизопропил- и моностеарилцитрат. Действие лимонной кислоты основано на связывании металлов с образованием хелатных комплексов. Применяют лимонную кислоту и ее эфиры в концентрации 0,2 — 1,5 г на 1 кг продукта.
Лимонная кислота (Е 330), одно-, двух- и трехзамещенные цитраты натрия (Е331), двух- и трехзамещенные цитраты калия (Е332), цитраты кальция (Е 333) применяются как регуляторы кислотности, стабилизаторы и комплексообразователи.
Действие лимонной кислоты и ее солей основано на способности связывать металлы с образованием хелатных соединений.
Сходное действие оказывает винная кислота и ее натриевая, кальциевая и калиевая соли. Обычно винную кислоту применяют в концентрации 2 г/кг. В виде эфиров с глицерином она может добавляться также в жирсодержащие продукты.
Винная кислота (Е 334) — синергист антиокислителей, комп-лексообразователь, ее соли — тартраты (Е 335— Е 337) — комплексообразователи.
Антиокислительные свойства проявляют и некоторые пряности: анис, кардамон, кориандр, укроп, фенхель, имбирь, красный перец.
Синергическим действием обладают также малеиновая, фума-ровая, фитиновая, никотиновая и n-аминосалициловая кислоты, аминокислоты, тиамин и некоторые сульфамиды.
КОНСЕРВАНТЫ
Концепция государственной политики в области здорового питания населения России предусматривает значительное расширение отечественного производства пищевых продуктов и обеспечение их безопасности. В этой связи первостепенное значение приобретает проблема максимального сохранения уже произведенных продовольственного сырья и пищевых продуктов на всех этапах их получения, хранения, транспортирования и реализации, включая домашние условия. По некоторым оценкам, 25 % произвденного в мире продовольствия подвержено повреждающему действию только микроскопических (плесневых) грибов. А другие микроорганизмы, например, повсеместно распространенные стрептококки и стафилококки, быстро размножаются и приводят к порче многих видов продуктов, прежде всего животного происхождения. Итак, первая задача — сохранение пищевого продукта, предотвращение его порчи и в итоге — устранение или снижение экономических потерь.
Список разрешенных к применению консервантов в РФ представлен в таблице 6.2.
Употребление в пищу продуктов, атакованных микроорганизмами, опасно для здоровья, а в ряде случаев и для жизни человека. Во-первых, многие микроорганизмы в процессе своего развития продуцируют токсины, которые накапливаются в продуктах и, поступая в организм человека, могут вызывать отравления, иногда с летальным исходом. Во-вторых, сами живые микроорганизмы, поступая с пищей в достаточно больших количествах, могут инициировать инфекционный процесс. Пищевые токсикоинфекции и микотоксикозы представляют собой очень серьезную проблему, постоянно находящуюся в центре внимания как органов здравоохранения всех стран, так и многих международных организаций. Таким образом, вторая задача — обеспечение безопасности пищевых продуктов путем недопущения или предотвращения развития на них микроорганизмов.
Обе задачи могут быть достаточно надежно и эффективно решены с помощью рационального и грамотного применения специальных пищевых добавок — консервантов. Как и все пищевые добавки, консерванты должны удовлетворять определенным стандартам качества. Поэтому большинство современных постановлений о разрешении к применению того или иного консерванта включают и требования к его чистоте. В основном они ограничивают содержание тяжелых металлов и специфических примесей, которые могут появиться при синтезе консерванта.
Эффективность конкретного консерванта неодинакова в отношении плесневых грибов, дрожжей и бактерий, т.е. он не может быть направлен против всего спектра возможных возбудителей порчи пищевых продуктов. Большинство консервантов, находящих практическое применение, действует в первую очередь против дрожжей и плесневых грибов. Некоторые консерванты малоэффективны против определенных бактерий, так как в области оптимальных для бактерий значений рН (часто это нейтральная среда) они слабо проявляют свое действие. Впрочем, такие бактерии не развиваются в средах с рН, благоприятным для применения консервантов.
Эффективность консервантов зависит от состава и физико-химических свойств консервируемого пищевого продукта. На нее могут влиять вещества, изменяющие рН или активность воды либо селективно адсорбирующие консерванты, а также природные составляющие продукта, которые сами проявляют антимикробное действие.
Некоторые из этих факторов усиливают действие консервантов, а другие ослабляют. По этим причинам используемая концентрация консерванта в пищевом продукте часто отличается от минимальной действующей концентрации, определенной in vitro.
Некоторые консерванты могут взаимодействовать с компонентами пищевых продуктов. При этом они частично или полностью теряют свою активность. Если предполагаются реакции такого рода, то для компенсации, как правило, используют более высокие дозы консерванта. Примером может служить диоксид серы, который реагирует с альдегидами и глюкозой. В вине эта реакция нежелательна, потому что ведет к связыванию важного побочного продукта брожения — ацетальдегида. Нитриты тоже могут реагировать с составляющими пищевых продуктов. В частности, из нитритов и аминов могут образовываться канцерогенные нитрозамины. Более подробные сведения о возможных взаимодействиях с компонентами пищевых продуктов приводятся ниже при описании отдельных консервантов.
Как правило, пищевые консерванты химически стабильны, и можно не опасаться их разложения в пищевых продуктах в течение допустимых сроков хранения. Среди неорганических консервантов исключение составляют нитриты, сульфиты, пероксид водорода и озон, среди органических — пирокарбонаты и антибиотики.
Для некоторых из этих веществ разложение необходимо, так как на нем основано их действие. Например, пероксид водорода уничтожает микробов посредством выделяемого кислорода. Для других консервантов, например диметилпирокарбоната, разложение нежелательно, так как приводит в конце концов к их исчезновению из продукта.
Некоторые консерванты могут разлагаться микроорганизмами. Это относится прежде всего к органическим соединениям, которые служат для ряда микроорганизмов источником углерода. Так, метилпарабен разлагается бактериями вида Pseudomonas aeruginosa, а сорбиновая кислота — грибами рода Penicillium и др. Разложение наблюдается не только когда консервант не действует против данного микроба, но и если имеется значительное несоответствие между концентрацией эффективного консерванта и обсеменен-ностью субстрата (например, в случае сильно загрязненного пищевого продукта или при уже начавшейся микробиологической порче). Поэтому нельзя сохранить пищевые продукты с помощью консервантов и возвратить им "свежесть", если порча уже началась. Потребитель пищевых продуктов с консервантами, способными к микробиологическому разложению, должен иметь гарантию, что для выработки этих продуктов было использовано микробиологически чистое сырье.
Пищевые продукты нельзя защищать от порчи любыми веществами, проявляющими консервирующее действие. При выборе консерванта для конкретного случая необходимо соблюдать определенные требования. Консервант не должен вызывать опасений с точки зрения физиологии; порождать токсикологические и экологические проблемы в процессе производства, переработки и использования; вызывать привыкание; реагировать с компонентами пищевого продукта или реагировать только тогда, когда антимикробное действие больше не требуется; взаимодействовать с материалом упаковки и адсорбироваться им.
Консервант должен иметь, возможно, более широкий спектр действия; быть достаточно эффективным против микроорганизмов, которые могут присутствовать в (на) данном пищевом продукте в определенных условиях (рН, активность воды и т.д.); воздействовать на токсинобразующие микроорганизмы и по возможен замедлять образование токсинов в большей степени, чем развитие микроорганизмов; как можно меньше влиять на микробиологические процессы, протекающие в некоторых пищевых продуктах (дрожжевое брожение теста, молочнокислое брожение квашений, созревание сыров); по возможности оставаться в пивом продукте в течение всего срока хранения; как можно меньше влиять на органолептические свойства пищевого продукта (запах, вкус, цвет и текстуру); по возможности быть простым в применении.
Запрещено применять консерванты в отдельных продуктах массового потребления (молоке, сливочном масле, муке, хлебе, кроме фасованного) и детского питания, а также в изделиях с маркировками "натуральные", "свежие".
Борная кислота Н3ВО3, ее производные и бораты (тетраборнокислый натрий, бура) длительное время довольно широко применялись для консервирования рыбы и ракообразных, зернистой осетровой и лососевой икры (в дозировке 3000 мг/кг), меланжа для кондитерского производства (1500 мг/кг). Токсикологические исследования показали, что борная кислота при потреблении с пищей накапливается в организме. Одним из центров ее кумуляции может быть нервная система. В высоких концентрациях ионы бората понижают потребление кислорода, образование аммиака и синтез глютамина в мозговой ткани. Поэтому длительное потребление продуктов, законсервированных борной кислотой, может вызвать хроническое отравление, которое сопровождается значительной потерей массы.
Эксперты ФАО/ВОЗ по пищевым добавкам считают, что борная кислота и бораты непригодны к использованию в качестве пищевой добавки, поскольку обладают кумулятивным действием.
В России борная кислота и бораты применяются ограниченно. ЛД50 этих соединений сравнительно высокая.
Пероксид водорода Н2О2 обладает бактерицидными свойствами. В процессе хранения пероксид водорода разлагается с образованием воды и свободного атомарного кислорода, который угнетает развитие бактерий, но не препятствует жизнедеятельности плесеней. В ряде стран пероксид водорода используется при консервировании молока, предназначенного для изготовления сыров. В России пероксид разрешен для отбеливания боенской крови и приготовления полуфабрикатов кореньев. В готовой продукции не должно быть остатков пероксида водорода. Поэтому при отбеливании боенской крови совместно с пероксидом водорода применяется каталаза для удаления остатков пероксида водорода. Однако использовать пероксид водорода в качестве консерванта для молока можно только в тех случаях, когда другие способы консервирования не дают желаемых результатов, например в тропических странах.
Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам неоднократно оценивал этот антисептик. На основе исследований рекомендовано использовать пероксид водорода только совместно с веществами, удаляющими остатки пероксида водорода.
Диоксид серы (Е 220) и ее производные — сернистый ангидрид SO2 (Е 220), сульфит натрия Na2SO3 (E 221), бисульфит натрия NaHSO3 (E 222) и метабисульфит натрия Na2S2O5 (E 223) используют в качестве консервантов и для предотвращения потемнения пищевых продуктов.
Сернистый ангидрид — бесцветный, неприятно пахнущий газ, хорошо растворимый в воде. Характерной особенностью этого соединения является то, что в водном растворе он окисляется кислородом воздуха и действует как восстановитель. Подавляет главным образом рост плесневых грибов, дрожжей и аэробных бактерий. В кислой среде этот эффект усиливается. В меньшей степени соединения серы оказывают влияние на анаэробную микрофлору. Сернистый ангидрид относительно легко улетучивается из продукта при нагревании или длительном контакте с воздухом. Благодаря этим свойствам сернистый ангидрид довольно широко применяется как консервант в консервной, винодельческой, кондитерской и рыбоперерабатывающей отраслях пищевой промышленности. Вместе с тем сернистый ангидрид разрушает тиамин и биотин, способствует окислительному распаду токоферола (витамина Е). В связи с этим соединения серы нецелесообразно использовать для консервирования продуктов питания, являющихся источником этих витаминов.
Максимально допустимое содержание сернистых соединений, (мг/кг или мг/л): блюда из мяса, колбасы — 450; блюда из морепродуктов — 10-100; перловая крупа — 30; картофель хрустящий — 50; крахмал картофельный — 100; сухофрукты (в зависимости от вида) — 500 - 2000; сахар — 15; соки фруктовые — 50; напитки безалкогольные, мед — 200; горчица — 250.
Сульфит натрия оказывает сильное бактерицидное влияние на Staphylococcus aureus и Bacillus subtilis, что определяет области его применения. Кроме того, сульфиты являются сильными ингибиторами дегидрогеназ. В организме сульфиты превращаются в сульфаты, поэтому к ним предъявляются те же гигиенические требования, что и к сернистому ангидриду.
В России сернистый ангидрид и сульфиты (в пересчете на него) применяются для консервирования и стабилизации многих продуктов питания. Допустимый предел содержания этих соединений зависит от того, подлежит ли продукт термической обработке неупотреблением или нет, как часто он используется в пищу, применяется самостоятельно или как полуфабрикат.
Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам установил безусловно допустимую суточную дозу сернистых соединений (в пересчете на диоксид серы) до 0,35 мг и условно допустимую — 0,35- 1,5 мг на 1 кг массы тела.
Бензойная кислота (Е 210) представляет собой бесцветное кристаллическое вещество со слабым специфическим запахом, труднорастворимое в воде и довольно легко растворимое в этиловом спирте и растительных маслах. Консервирующее действие бензойной кислоты основано на ингибировании ею каталазы и пероксидазы, в результате чего в клетках накапливается пероксид водорода. Бензойная кислота подавляет активность окислительно-восстановительных ферментов. В небольших концентрациях тормозит развитие аэробных микроорганизмов, в высоких — плесневых грибов и дрожжей. Присутствие белков ослабляет активность бензойной кислоты, а присутствие фосфатов и хлоридов — усиливает.
Бензойная кислота наиболее эффективна в кислой среде. В нейтральных и щелочных растворах ее действие почти не ощущается, поэтому недостаточно кислые продукты нельзя консервировать с применением бензойной кислоты. В сочетании с сернистым ангидридом антимикробное действие бензойной кислоты усиливается.
В жидкие пищевые продукты вводят натриевые и калиевые соли бензойной кислоты — бензоаты натрия и калия.
Бензоат натрия (Е 211) представляет собой почти бесцветное кристаллическое вещество с очень слабым запахом, хорошо растворимое в воде, имеющее более низкий консервирующий эффект. Однако из-за лучшей растворимости в воде бензоат натрия применяют чаще, чем бензойную кислоту. При использовании бензоата натрия необходимо, чтобы рН консервируемого продукта был ниже 4,5; при этом условии бензоат натрия превращается в свободную кислоту. Безусловно, допустимая доза бензойной кислоты для человека составляет до 5 мг, условно допустимая — 5 - 10 мг на 1 кг массы.
Метиловый, этиловый и пропиловый эфиры п-оксибензойной кислоты (Е 214—Е 219) обладают более сильным бактерицидным действием, чем сама кислота. Эти соединения входят в состав растительных алкалоидов и пигментов. Бактерицидное действие эфиров п -оксибензойной кислоты в 2 — 3 раза сильнее действия свободной бензойной кислоты, а токсичность их для человека в 3—4 раза ниже. Эфиры п -оксибензойной кислоты пригодны для консервирования нейтральных пищевых продуктов. Это связано с тем, что эфиры не диссоциируют и их антимикробная активность остается относительно независимой от значения рН. Торможение роста микроорганизмов, главным образом стафилококков и плес невых грибов, происходит путем воздействия эфиров п -оксибензойной кислоты на клеточные мембраны. ЛД50 для этих соединений равна 3-6 г, допустимое суточное потребление для человека — 10 мг на 1 кг массы тела. Однако следует отметить, что эфиры п -оксибензойной кислоты — выраженные спазмолитики и изменяют вкусовые качества продуктов.
Муравьиная кислота (Е 236) из всех жирных кислот обладает лучшими антимикробными свойствами и применяется в консервной промышленности многих стран. Муравьиная кислота при комнатной температуре представляет собой бесцветную жидкость с сильным раздражающим запахом. Бактерицидное действие ее более выражено в отношении дрожжей и плесеней. При концентрации муравьиной кислоты 0,2 % дрожжи гибнут через 24 ч, а при 1 % -через 30 мин. В применяемых концентрациях она не изменяет вкусовых свойств консервированного продукта. Благодаря своей летучести легко удаляется при нагревании. Однако муравьиную кислоту можно применять для тех пищевых изделий, в которых не должен происходить процесс желирования, так как она способствует выпадению пектиновых веществ в осадок.
Результаты токсикологических исследований показали, что муравьиная кислота медленно окисляется в организме человека и поэтому плохо выводится. Она отличается способностью ингибировать различные тканевые ферменты, в связи с чем возможно нарушение функций печени и почек. Антимикробное действие солей муравьиной кислоты формиатов зависит в значительной степени от величины рН.
Согласно рекомендациям Объединенного комитета экспертов ФАО/ВОЗ по пищевым добавкам допустимое суточное потребление муравьиной кислоты и ее солей не должно превышать 0,5 мг на 1 кг массы тела.
Пропионовая кислота (Е 280) относится к группе органических кислот, которые в живых организмах метаболизируются: пропионовая кислота — до пировиноградной кислоты. Соли пропионовой кислоты обнаруживаются в забродивших продуктах питания. Бактерицидное действие пропионовой кислоты, так же как и других низкомолекулярных органических кислот, зависит от рН среды. Кислота блокирует обмен веществ микроорганизмов. Ее применяют в концентрации 0,1-6,0 %. Выраженного отрицательного действия в указанных дозах пропионовая кислота не оказывает.
Для предотвращения плесневения пищевых продуктов часто используют не саму пропионовую кислоту, а ее натриевые, калиевые и кальциевые соли, которые легко растворяются в воде, а также смесь пропионовой кислоты с одной из солей.
Пропионовая кислота в качестве консерванта применяется не во всех странах. В США ее добавляют в хлебные и кондитерские изделия, в ряде европейских стран — в муку для предупреждения плесневения. Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам, учитывая резкий неприятный запах пропионовой кислоты, не считает нужным устанавливать для этого соединения величину допустимого суточного потребления.
Сорбиновая кислота (Е 201) представляет собой бесцветное кристаллическое вещество со слабым специфическим запахом, трудно растворимое в воде, но лучше растворяющееся в этаноле и хлороформе. В качестве консервантов используют также калиевые, натриевые и кальциевые соли сорбиновой кислоты (Е 202). Сор-баты хорошо растворяются в воде и незначительно — в органических растворителях. Антимикробные свойства сорбиновой кислоты зависят от значения рН в меньшей степени, чем бензойной кислоты. Так, при рН 5 сорбиновая кислота в 2-5 раз более эффективна в отношении тест-микроорганизмов, чем бензойная или пропионовая кислоты. Добавление кислот и поваренной соли усиливает фунгистатическое действие сорбиновой кислоты. Применяется сорбиновая кислота в концентрации 0,1 %. Сорбиновая кислота не изменяет органолептических свойств пищевых продуктов, не обладает токсичностью и не обнаруживает канцерогенных свойств.
Применяется во многих странах и в России для консервирования и предотвращения плесневения безалкогольных напитков, плодово-ягодных соков, хлебобулочных и кондитерских изделий, а также зернистой икры, сыров, полукопченых колбас и при производстве сгущенного молока для предотвращения его потемнения. Сорбиновая кислота применяется также для обработки упаковочных материалов.
Объединенный комитет экспертов ФАО/ВОЗ по пищевым добавкам установил, что из-за способности сорбиновой кислоты угнетать некоторые ферментативные системы в организме ее безусловно допустимая доза для человека до 12,5 мг, а условно допустимая — 12,5 — 25 мг на 1 кг массы тела.
Гексаметилентетрамин, или уротропин (Е 239), представляет собой белое кристаллическое вещество, лишенное запаха. Легко растворим в воде. Бактерицидное действие гексаметилентетрамина обусловлено образованием в кислой среде формальдегида — сильного дезинфицирующего вещества.
В нашей стране Гексаметилентетрамин разрешен для консервирования икры лососевых рыб (1000 мг на 1 кг продукта), за рубежом — колбасных оболочек и холодных маринадов для рыбной продукции. По данным ФАО/ВОЗ, допустимое суточное потребление гексаметилентетрамина не должно превышать 0,15 мг на 1 кг массы тела.
Дифенил (Е 231) и о-фенилфенол (Е 232) применяют для обработки цитрусовых в целях предотвращения развития плесени и других грибов. Наиболее широкое применение находит дифенил.
Им пропитывают материалы для упаковки цитрусовых и других фруктов, поверхностной обработки некоторых плодов путем кратковременного погружения их в 0,5-2,0%-ный раствор дифенила. В нашей стране эти консерванты не применяются, но реализация импортируемых цитрусовых разрешена.
Объединенный комитет ФАО/ВОЗ по пищевым добавкам определил ДСП для дифенила 0,05 мг и для о-фенилфенола 0,2 мг на 1 кг массы тела.
В разных странах установлен неодинаковый уровень допустимых остатков дифенила в цитрусовых. Так, в США он составляет 110 мг, в Германии — 70 мг/кг. В Чехии и Словакии разрешена переработка кожуры цитрусовых при содержании дифенила не более 20 мг/кг. Имеются сведения в том, что концентрация этого соединения уменьшается при смывании водой, значительная часть дифенила разрушается при тепловой обработке. В ряде стран службы здравоохранения ограничиваются предупреждением населения о необходимости тщательно мыть плоды цитрусовых и вымачивать корочки, если они используются в питании.
Нафтохиноны перспективны для использования в качестве консервантов. Следует выделить два представителя нафтохинонов —юглон — 5-окси-1,4-нафтохинон и плюмбагин — 2-метил-5-окси-1,4-нафтохинон, или 2-метилюглон. Эти вещества в сравнительно низких концентрациях обеспечивают подавление роста дрожжей — основной группы микроорганизмов, вызывающих порчу напитков. Нафтохиноны почти не изменяют органолептические свойства напитков, лишь несколько усиливают их цвет.
Стабилизирующее действие юглон оказывает в концентрации 0,5 мг/л, плюмбагин — 1 мг/л. Установлено, что такие концентрации обеспечивают 100-кратный порог безопасности.
Молоко, мед, зерновые, лук, чеснок, фрукты и пряности содержат естественные компоненты с антибиотическим действием. Эти вещества могут быть выделены, очищены и применены для консервирования пищевых продуктов.
Антибиотики, применяемые в пищевой промышленности. Введение антибиотиков сельскохозяйственным животным может привести к загрязнению пищевых продуктов животного происхождения. Контроль над остатками антибиотиков имеет большое гигиеническое значение. При употреблении продуктов питания, содержащих антибиотики, изменяется кишечная микрофлора, что приводит к нарушению синтеза витаминов, размножению патогенных микроорганизмов в кишечнике и возникновению аллергических заболеваний.
Аллилизотиоцианат (аллилгорчичное эфирное масло) является активным антимикробным компонентом горчичного порошка, который издавна применяли для предохранения вин и соков от помутнения биологического характера в концентрации 0,4 — 0,5 г/л.
Содержание в горчичном порошке аллилгорчичного эфирного масла приимерно 1 %. Для консервирования применяется в чистом виде в концентрации 0,001-0,0015 %. Используют также парафиновые таблетки, содержащие растворенный аллилизотиоцианат, для образования защитных пленок на поверхности вина в больших резервуарах, парафиновые поплавки-диски, импрегнированные аллизотиоцианатом в сосудах для хранения вин.
Низин (Е 234) является продуктом жизнедеятельности группы молочнокислых стрептококков, естественным местом обитания которых являются молоко, сыр, кисломолочные напитки, творог, простокваша и ряд других продуктов при рН 6,8. Способность молочнокислых бактерий задерживать развитие многих микроорганизмов была отмечена в 1928 г. Но только через 20 лет было делено вещество — низин, обладающее активностью в отношении целого спектра бактерий.
После подкисления до рН 4,2 значительная часть низина переходит в культуральную жидкость. Низин в отличие от других антибиотиков не обладает широким спектром действия. Он подавляет развитие стафилококков, стрептококков, сарцин, бацилл и клостридий. Использование низина позволяет уменьшить интенсивность тепловой обработки и сохранить пищевую ценность молока. Применение низина при выработке твердых и полутвердых сыров способствует уменьшению их вспучивания, вызываемого маслянокислыми бактериями. Научная комиссия по пищевым добавкам Европейского Сообщества (SCF) установила ДСП для низина 0-0,13 мг на 1 кг массы тела.
Биомицин, или хлортетрациклин, оказывает широкое антибактериальное действие, но превращается в безвредный для организма человека изомер изохлортетрациклин, проявляющий бактериостатическое действие. При обычной кулинарной обработке изохлортетрациклин почти полностью инактивируется. В настоящее время применение биомицинового льда (5 г биомицина на 1 т льда) допущено в условиях тралового лова в ограниченном районе и для хранения рыбы только тресковых пород. Применяют его также против бактериальной порчи говяжьего мяса в сочетании с нистатином, тормозящим развитие на мясе дрожжей и плесеней. Токсикологические исследования показали безвредность такого мяса. Наличие в мясе после кулинарной обработки, а также в мясных бульонах остаточных количеств изохлортетрациклина не допускается.
Пимарицин, или натамицин (Е 235), находит применение за рубежом наряду с низином в молочной промышленности. Пимарицин представляет собой бесцветные кристаллы, трудно растворяющиеся в воде (0,01 %) и метаноле (0,2 %) и не растворяющиеся в высших спиртах, эфире и диоксане. Пирамицин активен против большого числа микроскопических грибов и дрожжей. Применяют его в основном для предупреждения плесневения сыров во время их созревания. На основе этого антибиотика выпускается препарат "Дельвоцид", который применяют в производстве сыров в виде 0,3 - 0,5% водного раствора.
Нистатин — антибиотик, действие которого направлено преимущественно против дрожжей и плесеней. Применяется в комбинации с биомицином для сохранения свежести мяса. Его концентрация составляет 200 мг/л. Присутствие нистатина в мясе и мясных бульонах после кулинарной обработки не допускается.
- 1. Классификация пищевых добавок
- 2. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов загустители
- 3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов гелеобразователи
- 4. Пищевые добавки, определяющие вкус и аромат пищевых продуктов - подсластители
- 5. Кислоты
- 6. Пищевые добавки, замедляющие микробную и окислительную порчу пищевого сырья и готовых продуктов
- 7. Технологические добавки и улучшители качества вещества, препятствующие слеживанию и комкованию
- 8. Биологически активные добавки к пище
- 9. Гигиеническая и генетическая безопасность пищевых добавок
- 10. Виды питания