logo search
Защ

Косл ≈ 2х/d (1.39.)

Расчеты показывают, что проникающая способность гамма-излучения в воздухе десятки и сотни метров, в твердых телах - многие сантимет­ры, в биологической ткани человека часть гамма-квантов проходят через человека насквозь.

Б е т а - и з л у ч е н и е

Прохождение бета-частиц (электронов) через вещество сопровождается упругими и неупругими соударениями с ядрами и электронами тормозящей среды.

Упругое рассеяние электронов на ядрах более вероятно и осуществляется при относительно низких энергиях электронов Еβ < 0,5 МэВ (рис.1.8.). Упругое рассеяние электронов на электронах в Z раз (Z - величина заряда ядра) менее вероятно, чем на ядрах (рис.1.9.). Возможен в редких случаях и сдвиг ядер атомов кристаллической решетки (рис.1.10.).

При энергии электронов выше энергии связи электрона и до ≈ 1 МэВ основным механизмом потерь энергии является неупругое рассеяние на связанных электронах, приводящее к ионизации и возбуждению атомов (рис.1.11.).

е

е

е

е

Рис.1.8. Упругое рассеяние бета-частиц на ядрах атомов

Рис.1.9. Упругое рассеяние бета-частиц на электронах атома

е

Рис.1.10. Вариант смещения ядра атома кристаллической решетки

При больших энергиях электронов главным механизмом потерь энергии является радиационное торможение, при котором возникает тормозное излучение.

е

β

β

Рис. 1.11. Ионизация атома бета-частицами (неупругое взаимодействие)

Одним из вариантов неупругого взаимодействия является К- захват.

Таким образом, процессы взаимодействия электронов (бета-частиц) со средой характеризуются радиационным торможением и относительно большой потерей энергии или значительным изменением направления движения электронов в элементарном акте. Вследствие этого взаимодействия интенсивность пучка электронов уменьшается почти по экспоненте с ростом толщины поглощающего слоя х, т.е. для бета-частиц справедлива формула (1.35.).

Путь электронов в веществе представляет ломаную линию, а пробег электронов одинаковых энергий имеет значительный разброс. Пробег электронов (бета-частиц) примерно в 1000 раз больше пробега альфа-частиц в веществе. В таблице 1.2. показана средняя глубина пробега бета-частиц в воздухе, биологической ткани и для примера в алюминии.

Итак, бета-частицы не имеют точной глубины проникновения, так как обладают непрерывным энергетическим спектром. Для грубой оценки глубины пробега бета-частиц пользуются приближенными формулами. Одна из них:

Rср/Rвозд = rвозд/rср (1.40.)

где: Rср - длина пробега в среде; Rвозд - длина пробега в воздухе, Rвозд = 450Eb; rвозд и rср - плотность воздуха и среды соответственно; Eb - энергия бета-частиц.

Таблица 1.2.