Проблемы оценки малых доз облучения
В документе уделено значительное внимание обоснованию беспороговой концепции при малых дозах облучения. Установлено, что при малых дозах облучения не нарушается естественный иммунитет, с уменьшением дозы и мощности дозы удлиняется только латентный период возможного заболевания раком.
При больших дозах одновременно гибнет большое число клеток. Тем самым стимулируется усиленное размножение неповрежденных клеток даже в тканях с малой частотой деления. При этом ускоренное размножение клеток выступает в роли промотора, способствуя развитию заболевания раком. При малых дозах этого эффекта нет. Поэтому экстраполяцию обычно проводят, применяя коэффициент дозы и мощности дозы. Почти все данные о стохастических изменениях в клетках и в простых биологических организмах, а также возникновении многих опухолей у животных свидетельствуют о криволинейных зависимостях "Доза-эффект". Для большинства биологических систем существует зависимость:
Е = aD + bD2 (2.3.)
где: Е - вероятность стохастических эффектов (заболеваний раком);
D - поглощенная доза; α - коэффициент, характеризующий наклон линейной части кривой Е; β - коэффициент, характеризующий наклон криволинейного участка кривой Е. Тогда график зависимости вероятности стохастических эффектов от величины дозы будет иметь вид (рис.2.7.). При такой зависимости вероятность возникновения рака растет линейно, а затем круто нарастает по мере того, как начинает действовать квадратный член bД2 . При еще больших дозах эффект даже уменьшается из-за того, что гибель клеток уменьшает число клеток, подверженных риску. Как видно, оснований для предложений о реальном пороге в этой зависимости нет.
На основании этой зависимости МКРЗ определила коэффициент влияния дозы и мощности дозы как отношение наклона прямой А, аппроксимирующей беспороговую зависимость данных при большой дозе и при большой мощности дозы к наклону прямой В, аппроксимирующей беспороговую зависимость данных при малой мощности дозы (рис.2.7.). Это фактическая вероятность выхода эффектов, полученных из наблюдения при больших дозах к вероятности при малых дозах. Из рис.2.7. видно, что кривые А и D сливаются вначале. Выяснилось, что величина этого коэффициента различна для разных видов опухолей и лежит в диапазоне от 2 до 10.
МКРЗ решила для целей радиационной безопасности использовать наименьшее значение 2, сознавая, что выбор до некоторой степени произволен и самое главное "консервативен", так как завышает риск при малых дозах. Этот уменьшающий коэффициент назван МКРЗ коэффициентом, учитывающим эффективность дозы и мощность дозы ДДРЕФ ( Dose and Rate Effecnivens Faktor).
А
ДДРЕФ = αL/α1 D α1
В αL
Эффективная доза
Рис.2.7. Зависимость вероятности стохастических эффектов от величины дозы
А - линейно-квадратичная аппроксимация с учетом радиационной гибели клеток; В и Dлинейные экстраполяции разных участков кривой А; α1‚ αL- коэффициенты, определяющие наклон кривых.
Оценка стохастических эффектов для острого облучения в больших дозах на основе новых данных показывает, что для стандартной группы людей трудоспособного возраста вероятность смерти примерно равна 8х10--2 Зв-1 за всю жизнь. В сочетании с ДДРЕФ = 2, получается минимальный коэффициент для работающих 4х10--2 Зв-1. Для всей популяции, включая детей, соответствующие значения составляют при больших дозах 10х10—2 Зв-1 и 5х10--2 Зв-1 при малых дозах. Номинальные коэффициенты вероятности стохастических эффектов и коэффициенты вероятности рака для различных органов представлены в таблицах 2.11. и 2.12. В заключение необходимо отметить, что использование линейного беспорогового соотношения "Доза - эффект" для стохастических эффектов не является лишь упрощенным консервативным допущением. Оно обосновано в радиобиологии и согласуется с имеющимися данными по возникновению рака у человека. Оно имеет большие преимущества при разработке инструкций и правил радиационной безопасности, так как позволяет раздельно рассматривать отдельные источники облучения. К сожалению, наклон кривой Е пока точно не определен, но уже широко распространена научная трактовка, что современная величина, принятая равной 5% на Зиверт, не является недооценкой величины степени риска. Одни ученые считают, что степень риска выше, другие считают, что данная величина сильно преувеличена, однако ни одна из этих точек зрения не получила широкого признания. Радиобиологическая теория, которая подтверждает линейное беспороговое соотношение при малых дозах, концептуально и математически проста и обеспечивает прочную научную базу для долгосрочных прогнозов. В процессе дальнейших научных исследований и получения достаточных статистических данных возможны некоторые уточнения.
Таблица 2.11.
- Министерство образования Республики Беларусь
- Ф. Жолио-Кюри Введение
- Тема 1. Физическая природа и источники радиационной опасности для человека, объектов и природной среды
- 1.1. Радиоактивное превращение ядер
- 1.1.1. Общие сведения об атоме и атомном ядре
- 1.1.2. Явление радиоактивности
- 1. Выбрасывание электрона и антинейтрино - - - распад;
- Примечание. Так как массы выбрасываемых электрона, позитрона, нейтрино и антинейтрино крайне малы по сравнению с массой протонов и нейтронов, то массовое число атома можно считать неизменным.
- 1.1.3. Основной закон радиоактивного распада радионуклида
- 1.1.4. Закон изменения активности радионуклидных рядов
- 1.1.5. Закон спада радиоактивности продуктов ядерного деления
- 1Ч 150 суток tн
- Вопросы для самоконтроля:
- 1.2. Виды ионизирующих излучений, их характеристики и взаимодействие с веществом
- 1.2.1. Краткая характеристика ионизирующих излучений
- 1.2.2. Взаимодействие ионизирующих излучений с веществом
- Косл ≈ 2х/d (1.39.)
- Пробеги бета-частиц
- Пробеги альфа-частиц в воздухе, биологической ткани и алюминии
- Воздействие радиоактивных излучений на физические свойства некоторых материалов
- Воздействие проникающей радиации на элементы схем
- Вопросы для самоконтроля:
- 1.2.3. Хакрактеристики ионизирующих излучений. Единицы измерения
- Коэффициенты качества излучения
- Взвешивающие коэффициенты wt*
- Вопросы для самоконтроля:
- 1.2.4. Основные способы определения и измерения ионизирующих излучений
- Классификация приборов
- Радиометрия внутреннего облучения человека
- Вопросы для самоконтроля:
- 1.3. Источники ионизирующих излучений
- 1.3.1. Космическое излучение
- 1.3.2. Земная радиация
- Радиоактивное семейство урана-235 (ряд актиноурана)
- Природные радионуклиды в почвах
- Содержание радионуклидов в некоторых веществах, Бк/кг
- Распределение активности некоторых радионуклидов в различных частях биосферы
- Содержание калия-40 в окружающей среде
- Средняя удельная активность калия-40 и рубидия-87 в тканях взрослого мужчины и создаваемые годовые эквивалентные дозы
- 1.3.3. Антропогенные источники ионизирующих излучений
- Область применения и вид используемых закрытых источников ионизирующего излучения в различных областях
- Атомная электростанция, как источник радиационной опасности
- Управления
- % Выхода осколков
- 80 105 130 150 Атомный номер изотопов
- Ядерные боеприпасы, как источники радиационной опасности
- Вопросы для самоконтроля:
- Глава 2. Основы радиационной безопасности биологических систем
- 2.1. Биологическое действие ионизирующих излучений
- 2.1.1. Воздействие энергии ионизирующих излучений на биологическую ткань
- Физический этап (поглощение энергии)
- Биологическое действие ионизирующих излучений
- Радиационные повреждения
- Молекула воды
- Хромосома
- Молекула белка
- Вопросы для самоконтроля:
- 2.1.3. Радиочувствительность. Реакция органов и систем человека на облучение
- Некоторые особенности радиоустойчивости органов при внешнем облучении
- Диапазоны радиочувствительности различных организмов
- Действие излучения на человека при облучении всего организма
- Реакция организма на облучение. Радиационные синдромы
- Некоторые особенности реакции органов и систем при внутреннем облучении
- Кровеносная система
- Вопросы для самоконтроля:
- 2.1.4. Детерминированные и стохастические эффекты. Степени лучевой болезни
- Детерминированные эффекты
- Приблизительные пороговые дозы для детерминированных эффектов в различных тканях, основанные на реакциях пациентов на стандартное фракционированное рентгеновское или гамма-облучение
- Острая лучевая болезнь (олб)
- Оценки порогов детерминированных эффектов у взрослых людей в некоторых органах при воздействии излучения с малой линейной передачей энергии
- Диапазон доз, связанных с отдельными радиационно индуцированными синдромами и смертью людей, подвергшихся острому лучевому воздействию с малой линейной передачей энергии равномерно по всему телу
- Показатели степени тяжести олб в фазе первичной острой реакции
- Показатели степени тяжести олб в латентной фазе
- Стохастические эффекты
- Хроническая лучевая болезнь (хлб)
- Вопросы для самоконтроля:
- 2.2. Принципы и критерии радиационной безопасности
- 2.2.1. Международные нормы радиационной безопасности
- Проблемы оценки малых доз облучения
- Номинальные коэффициенты вероятности стохастических эффектов
- Коэффициенты вероятности рака для отдельных органов
- Принципы, цели и критерии радиационной безопасности
- 3) Облучение отдельных лиц, в сумме от всех видов деятельности не должно превышать установленных дозовых пределов (принцип нормирования индивидуальной дозы).
- Нормирование облучения для практической деятельности
- Пределы годового поступления некоторых радионуклидов для населения
- Вмешательство. Уровни вмешательства
- Диапазон, в котором устанавливаются оперативные уровни вмешательства по принципу оптимизации
- Критерии для принятия решений о переселении и ограничении потребления загрязненных продуктов
- Уровни для изъятия и защиты пищевых продуктов
- Вопросы для самоконтроля:
- Требования к ограничению техногенного облучения в контролируемых условиях
- Требования к защите от природного облучения в производственных условиях
- Требования к ограничению облучения населения
- Значения дозовых коэффициентов, пределов годового поступления с воздухом, допустимой объемной активности во вдыхаемом воздухе и уровни вмешательства
- Значения дозовых коэффициентов, пределов годового поступления и уровни вмешательства
- Ограничение медицинского облучения.
- Требования по ограничению облучения населения в условиях радиационной аварии
- Требования к контролю за выполнением норм
- Значения допустимых уровней радиационного воздействия
- Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты, част./(см2▪ мин)
- Вопросы для самоконтроля:
- 2.2.3. Оценка радиационной обстановки
- Оценка радиационной обстановки при авариях на аэс методом прогнозирования
- 1. Построение возможных зон радиоактивного заражения (загрязнения)
- Характеристики зон радиоактивного заражения (загрязнения) местности при авариях на аэс
- 14 Мрад/ч 140 мрад/ч 1,4 рад/ч 4,2 рад/ч
- 4. Определение возможных доз внутреннего и внешнего облучения людей на этапе спада радиации по закону Вэя-Вигнера.
- Размеры прогнозируемых зон загрязнения местности на следе облака при аварии на аэс, км
- Дозы облучения, получаемые людьми при открытом расположении в середине зоны от аварии на аэс, 10-4Гр
- Дозы облучения, получаемые людьми при открытом расположении в середине зоны при аварии на аэс, 10-2 Гр
- Суммарные радиационные потери (%) в зависимости от полученной дозы облучения
- Оценка радиационной обстановки после аварии на аэс по данным разведки
- Зависимость линейного коэффициента ослабления гамма- и бета - излучения воздухом от энергии излучения
- Методика прогнозирования и оценки радиационного загрязнения продукции растениеводства и животноводства
- Оценка радиационной обстановки при взрывах ядерных боеприпасов
- Населенный пункт 8 р/ч
- Размеры зон радиоактивного заражения на следе радиоактивного облака
- Вопросы для самоконтроля:
- Глава 3.
- Авария, ее развитие и ликвидация
- 3.1.3. Выбросы и особенности радиоактивного загрязнения местности Республики Беларусь
- Изотопы, попавшие в выброс в результате чернобыльской аварии (оценки на январь 2000 г.)
- Цезий-137 Йод-131
- 1157 Более 40
- Цирконий-90
- 3.9. Схема распада плутония-239
- Америций-241
- 14,4 Года
- Особенности миграции радионуклидов и прогнозирование радиоактивного загрязнения местности
- Вопросы для самоконтроля:
- 3.2. Последствия радиоактивного загрязнения местности для республики беларусь
- 3.2.1. Социально-экономические потери Республики Беларусь
- 3.2.2. Последствия катастрофы на Чернобыльской аэс для здоровья населения Республики Беларусь
- Некоторые выводы из оценки заболеваний населения.
- 3.2.3. Последствия катастрофы на Чернобыльской аэс для животного мира
- 3.2.4. Последствия катастрофы на Чернобыльской аэс для растительного мира
- Вопросы для самоконтроля:
- 4.2. Краткая характеристика мероприятий, направленных на выживание населения в условиях радиоактивного загрязнения местности
- 4.2.1. Эвакуация и отселение
- 4.2.2. Дозовые нагрузки, установленные для населения
- 4.2.3. Организация медицинской помощи, пострадавшим от радиации
- 4.2.4. Система радиационного мониторинга в Республике Беларусь
- Минсельхоз-прод
- Госкомпром (строительные материалы)
- Минлесхоз (дары леса, лесо- сечный фонд)
- Ускоренное выведение радионуклидов из организма
- Применение принципа конкурентного замещения
- Употребление продуктов, слабо аккумулирующих радионуклиды
- Насыщение организма микроэлементами
- Употребление повышенного количества отдельных витаминов
- Рациональное питание
- Употребление пищевых добавок
- Периодическая очистка органов и систем человека от шлаков
- 4.2.6. Мероприятия по повышению адаптационно-компенсаторных возможностей организма человека
- 4.2.7. Санитарно-гигиенические мероприятия
- Вопросы для самоконтроля:
- 4.2. Ликвидация последствий радиоактивного загрязнения местности
- 4.2.1. Дезактивация территории, объектов, техники и продуктов питания
- Общая методика оценки дезактивации
- Способы дезактивации
- Жидкостные
- Дезактивация зданий и сооружений
- Дезактивация транспорта
- Дезактивация одежды
- Дезактивация дорог, грунта, воды, лугов и сельскохозяйственных угодий
- Санитарная обработка людей
- Дезактивация продуктов питания
- Мясные продукты
- Молочные продукты
- Овощи и фрукты
- Грибы и ягоды
- Витебск
- Растениеводство
- Содержание цезия-137 (Ки/кг*10-9) в урожаях сельскохозяйственных культур в зависимости от обеспеченности дерново-подзолистых почв обменным калием при плотности загрязнения 1Ки/км2
- Допустимые уровни содержания цезия-137 и стронция-90 в некоторых кормах
- Животноводство
- Переход радионуклидов из суточного рациона в продукцию животноводства (в % на 1 кг продукции)
- Вопросы для самоконтроля:
- Толщина слоев половинного ослабления ионизирующих излучений для различных материалов
- Некоторые множители и приставки для образования кратных и дольных единиц
- Соотношение между единицами си и внесистемными единицами в области ионизирующих излучений
- Радиоактивное семейство урана-235 (ряд актиния)
- 207 Pb(стабильный)
- Радиоактивное семейство урана-238 (ряд урана-радия)
- 206 Pb (стабильный)
- Радиоактивное семейство тория-232
- 208 Pb (стабильный)
- Республиканские допустимые уровни содержания радионуклидов цезия-137 и стронция-90 в пищевых продуктах и питьевой воде (рду-99)
- Глава 1. Физическая природа и источники радиационной опасности для человека, объектов и природной среды …………………… ………….. 6
- Глава 2. Основы радиационной безопасности биологических систем……..66
- Глава 3.Авария на Чернобыльской аэс и ее последствия
- Глава 4. Комплекс мероприятий по выживанию населения в условиях