Молекула белка
Ученые считают, что именно белок, как одна из молекул жизни появилась первой на Земле.
Белок - это высокомолекулярное органическое соединение, построенное из 20 аминокислот. Аминокислоты появились на Земле, когда в атмосфере появились метан, аммиак, пары воды. Воздействие ультрафиолетового солнечного излучения привело к образованию формальдегида, затем цианистого водорода. Именно они являются ключом к разгадке появления белков и нуклеиновых кислот. В 1953 году в Чикаго американский ученый Миллер экспериментально установил, что если подвергать воздействию электрическим зарядом смесь метана, воды и водорода можно получить до 2% различных аминокислот. Из 20 аминокислот в организме человека синтезируется только 12, остальные 8 в готовом виде поступают в организм вместе с пищей. Белки в организме разнообразны. Их имеется свыше 10 миллионов и выполняют они разные функции: структурные, регуляторные (гормоны), каталитические (ферменты), защитные (антитела), транспортные (гемоглобин), энергетические и др.
Постоянное обновление белка лежит в основе обмена веществ и он играет важную роль в жизнедеятельности организма. До 20% поглощенной энергии облучения связано с повреждением белка. При облучении молекул белка ионизирующими излучениями она возбуждается в целом и за счет миграции энергии (аналогично в молекуле ДНК) разрыв происходит в наиболее слабых местах, а именно в связях между аминокислотами, которые могут быть ионными, ковалентными и с участием воды. К сожалению, в отличие от молекулы ДНК, молекула белка системы защиты от радиации не имеет.
Таким образом, в боковых цепях аминокислот возникают свободные радикалы. Такие события происходят в результате прямого действия ионизирующих излучений. При косвенном действии образование свободных радикалов происходит при взаимодействии белковых молекул с продуктами радиолиза воды. Образование свободных радикалов влечет за собой изменения структуры белка:
разрыв водородных, гидрофобных, дисульфидных связей;
модификация аминокислот в цепи;
образования сшивок и агрегатов;
нарушение вторичной и третичной структуры белка.
Такие нарушения в структуре белка приводят к нарушению его функций. Но большое количество молекул белка в организме, их постоянное обновление позволяет на биологическом уровне противостоять радиации с учетом степени их облучения.
Большая разновидность белков, разные размеры, количество, разные функции вызывают при облучении и разные последствия. Например, только ферментов, ускоряющих химические реакции более 1000. Разрушение отдельных из них приводит к угнетению функций отдельных систем. Последствия облучения во многом зависят от структуры белка.
Различают первичную, вторичную, третичную и четвертичную структуру белка. Наиболее подвержена облучению четвертичная структура и менее подвержена первичная структура. Это объясняется их прочностью. О последствиях облучения белка можно судить только, если известен тип белка, вид и время облучения.
Л и п и д ы
Липиды это жироподобные вещества и жиры, плохо растворимые в воде. Из них в частности построены клеточные перегородки (мембраны). В связи с тем, что липиды плохо проводят тепло, они выполняют защитную функцию, они также играют и роль запасных питательных веществ в организме человека.
При облучении липидов ионизирующими излучениями его последствия во многом зависят от того, какие именно липиды облучаются. Если липиды мало участвуют в процессах обмена, то они мало влияют на здоровье человека.
Подробней действие ионизирующих излучений на липиды следующее.
Под влиянием облучения происходит образование свободных радикалов ненасыщенных жирных кислот, которые при взаимодействии с кислородом образуют перекисные радикалы, а они, в свою очередь, реагируют с нативными жирными кислотами. Это процесс перекисного окисления липидов. Так как липиды - основа биомембран, то перекисное окисление повлечет за собой изменение их свойств. А поскольку клетка представляет собой систему взаимосвязанных мембран и многие процессы клеточного метаболизма проходят именно на мембранах, то в клетке нарушаются биохимические процессы. Выражено нарушение энергетического обмена, что связано с повреждением митохондрий. Нарушение целостности наружной мембраны клетки приводит к сдвигу ионного баланса клетки из-за выравнивания концентраций натрия и калия (в клетке - повышенное количество калия, в межклеточном пространстве - натрия).
У г л е в о д ы
Общая формула углеводов может быть представлена в виде Сn(H2O)m. Учитывая, что молекула углерода более устойчива к облучению, чем молекула воды, то при облучении возникают радикалы воды, о свойствах которых уже говорилось ранее. Учитывая, что углеводы это источник энергии в организме, то при их разрушении такой источник исчезает, что приводит к угнетению многих жизненно важных систем организма.
Более подробно воздействие ионизирующих излучений на углеводы следующее. Под действием излучения происходит отрыв атома водорода от кольца углеводной молекулы, образуются свободные радикалы, а затем перекиси. Из продуктов распада углеводов - глицеринового - синтезируется метилглиоксаль - вещество, ингибирующее синтез ДНК и белка, и подавляющее деление клеток. Чувствительна к облучению и гуалуроновая кислота, являющаяся составным элементом соединительной ткани.
К л е т к а
Клетка - это один из основных структурных, функциональных и воспроизводящих элементов живой материи, ее элементарная живая система. В 1г человеческой ткани примерно 600 миллионов клеток, у новорожденного человека число клеток составляет 2х1012, которое еще больше возрастает по мере роста организма.
Клетка имеет достаточно сложное строение и изучается в биологии.
Справка. Если рассматривать только химический состав клетки, то в нее входит более 100 химических элементов, но на долю 4-х из них приходится 98% массы клетки - это кислород (65 - 75%), углерод (15 - 18%), водород (8 - 10%), азот (1,5 - 3%). В значительных количествах в организме человека имеются: сера, фосфор, хлор, калий, натрий, магний, кальций, железо. Остальные микроэлементы имеются в незначительных количествах. Воды в клетке 70 - 80%. Кроме химических, в клетке имеются и биологические молекулы: белки - 10 - 20%, жиры - 1 - 1,5%, углеводы - 2%, нуклеиновые кислоты 1 - 2%.
В организме человека клетки выполняют разные функции. Различают клетки: половые, соматические, жировые, лейкоциты, лимфоциты и др. Радиобиологический закон выделяет два типа клеток: клетки делящиеся и малодифференцированные ткани относятся к радиочувствительным. Такими являются кроветворные клетки костного мозга, зародышевые клетки семенников, кишечный и плоский эпителий.
Заметим, что у детей все клетки делятся до окончания роста, а у взрослых делятся только клетки кожи, желудочно-кишечного тракта, глаз и крови. Остальные клетки периодически обновляются.
Клетки же неделящиеся и дифференцированные ткани относят к радиоустойчивым. К ним относят: мозг, мышцы, печень, почки, хрящи, связки. Исключение в этом списке составляют лимфоциты, несмотря на их дифференциацию и неспособность к делению.
Наибольший вред организму приносит облучение соматических клеток и клеток крови. Рассмотрим в качестве примера вначале соматическую клетку, так как их в организме много. Выделим в клетке только те элементы, которые больше всего подвержены воздействию радиации и вызывают наиболее тяжелые последствия. Поняв механизм воздействия радиации на клетку можно предпринимать меры защиты, которые снизят результаты этого воздействия.
Модель клетки (ее фрагметы) показана на рис.2.4. Клетка состоит из нескольких частей: мембраны, цитоплазмы, ядра, рибосом, митохондрий, транспортных молекул тРНК (рибонуклеиновой кислоты), матричных мРНК, молекул АТФ (аденозинтрифосфата), рибосомных рРНК и других частей, которые на рисунке не показаны. В ядре клетки находится 46 хромосом.
Примечание: в клетке 80% рРНК, 5% - мРНК, 15% - тРНК. Рибосомы - это цеха по производству молекул белка. Матричные (информационные) мРНК "снимают копию" с участков молекул ДНК и доставляют в рибосому информацию о типе белка, который необходимо синтезировать. Транспортные тРНК из тока кровеносных сосудов забирают аминокислоты и транспортируют в рибосомы, где рибосомные рРНК строят белок. Иногда для синтеза белка несколько рибосом объединяются по "команде" мРНК. Обычно в данный момент времени задачу синтеза белка решают только около 10% рибосом, остальные "отдыхают".
При облучении клетки, например, бета-частицами, прежде всего, повреждается мембрана. Если учесть, что давление внутри клетки больше, чем в межклеточном пространстве, то через образовавшиеся бреши будет вытекать цитоплазма. В этом случае ядро вырабатывает ферменты, которые тРНК транспортируют к местам повреждений мембраны и "зашивают" бреши. Таким образом, тРНК вместо того, чтобы заниматься своим делом - транспортировать аминокислоты в рибосомы для синтеза белка, занимаются "ремонтом" мембраны. Если интенсивность облучения превышает некоторый предел, то тРНК задачу "ремонта" мембраны решить не могут и клетка погибает. Дальнейшее проникновение бета-частиц в клетку может вызвать разрушения любых органел. При облучении бета-частицами самих молекул тРНК они повреждаются и не могут выполнять свои функции.
При облучении рибосом, за счет разрушений рибосомной РНК и белка, в рибосоме может быть построен другой белок, который ведет себя как инородное тело. Такое облучение не всегда представляет большую опасность, так как в последующих циклах может быть сформирован и "свой" белок. Повреждение матричных РНК также может привести к формированию "чужого" белка. Если в последующих циклах облучение отсутствует или не приведет к разрушению мРНК, то информация для строительства белка будет достоверной.
Бета-частица
Рибосомы
Ядро (46 хромосом)
рРНК
мРНК
Мембрана
тРНК
Рибосомы
Митохондрия
Цитоплазма
Рис.2.4. Модель соматической клетки (фрагмент cинтеза белка)
Наиболее драматичная ситуация возникает, если поражаются хромосомы и их главная часть - молекулы ДНК. В этом случае клетка или погибает или начинает бесконтрольно делиться. Если учесть воздействие ионизирующего излучения и на другие основные органеллы клетки, то можно выделить следующие последствия облучения:
при облучении ядра клетки возможны: подавление клеточного деления (если клетка делится), двунитчатые разрывы нуклиотидов и хромосомные аберрации, однонитчатые разрывы нуклеотидов и репарация (восстановление) связей, нарушение синтеза ДНК и остановка деления (для делящихся клеток), генные мутации, нарушение транспортной функции и репарация, нарушение синтеза клеточных белков, запуск механизма бесконтрольного деления (в соматических клетках);
нарушение проницаемости цитоплазматической мембраны;
цитолиз лизосом (лизосомы - цитоплазматические включения, с которыми связано накопление некоторых ферментов и процессы внутриклеточного пищеварения);
нарушение энергетического обмена за счет разрушения (повреждения) митохондрий и молекул АТФ (аденозинтрифосфорной кислоты);
нарушение синтеза белков в рибосомах;
радиационный автолиз эндоплазматической сети (специальная структура цитоплазмы).
Если обобщить реакцию клетки на облучение (биологическая стадия), то возможны три типа реакции на облучение:
1.Радиационный блок митозов (временная задержка деления);
2. Митотическая (репродуктивная) гибель клетки;
3. Интерфазная гибель клетки.
Наиболее универсальная реакция клетки на воздействие ионизирующих излучений - временная задержка деления (радиационный блок митозов). Длительность его зависит от дозы: на каждый Грей дозы клетка отвечает задержкой митоза в 1 час. Проявляется этот эффект независимо от того, выживет ли клетка в дальнейшем. Причем с увеличением дозы облучения увеличивается не число реагирующих клеток, а именно время деления каждой клетки. Эта реакция имеет огромное приспособительное значение: увеличивается длительность интерфазы, оттягивается вступление клетки в митоз, создаются благоприятные условия для нормальной работы системы репарации ДНК.
При больших дозах, которые необходимы только для развития радиационного блока митозов, развивается митотическая гибель клетки. Это относится к клеткам, не делящимся или делящимся редко. В клетке не выражены дегенеративные процессы. Показателем выживаемости клетки является ее способность проходить 5 и более делений.
Варианты митотической гибели: 1) клетка гибнет в процессе одного из первых четырех пострадиационных митозов, невзирая на отсутствие видимых изменений; 2) облученные клетки после первого радиационного митоза формируют так называемые "гигантские" клетки (чаще в результате слияния "дочерних" клеток). Такие клетки способны делиться не более 2 - 3 раз, после чего погибают. Основная причина митотической гибели клетки - повреждение хромосомного аппарата клетки, приводящее к дефициту синтеза ДНК.
Интерфазная гибель клетки наступает до вступления клетки в митоз. Для большинства соматических клеток человека она регистрируется после облучения в дозах в десятки и сотни Грей. Лимфоциты (радиочувствительные клетки) гибнут по этому механизму даже при небольших дозах.
Механизм интерфазной гибели следующий. За счет разрывов в молекуле ДНК нарушается структура хроматина. В мембранах идет процесс перекисного окисления липидов. Изменения ДНК-мембранного комплекса вызывают остановку синтеза ДНК. Повреждение мембраны лизосом приводит к выходу из них ферментов - протеаз и ДНК-аз. Эти ферменты разрушают ДНК, что ведет к пикнозу ядра. Повреждение мембран митохондрий ведет к выходу из них кальция, который активирует протеазы. Все это приводит к гибели клетки.
Степень разрушения клетки зависит не только от поглощенной дозы, но и ее распределения во времени. Если полученная доза растянута во времени, то ущерб будет меньше. Особенно это касается делящихся клеток. Впрочем, последствия для делящихся клеток во многом зависят от того, на какой фазе деления клетки имело место облучение. Итак, возможны три варианта последствий облучения клетки:
полное выживание клетки без последствий;
- процесс выживания и деления осложнен и клетка погибает;
появление живой, но измененной клетки.
Третий случай наиболее опасен. При облучении делящейся соматической клетки возможно развитие рака, так как может быть порожден процесс бесконтрольного деления измененных клеток.
Рассмотрим половую клетку. Первая эмбриональная клетка, образующаяся после слияния сперматозоида с яйцом, особенно чувствительна к облучению. В первые 5 суток гибель зародыша наиболее вероятна, затем могут быть поражения мозга, уродства.
Облучение после органообразования у зародыша вызывает рождение хилого потомства. От радиации обычно быстро гибнут клетки лимфоцитов, незрелые клетки костного мозга, половые железы и клетки хрусталика глаза.
Как уже отмечалось, чувствительны к облучению клетки крови и ее заболевания одна из проблем радиационной безопасности. Рассмотрим подробней.
Наша справка.Кровь - непрозрачная, клейкая жидкость красного цвета, солоноватого вкуса, состоящая из двух частей: плазмы и форменных ферментов - эритроцитов, лейкоцитов и тромбоцитов. Объем плазмы у человека равен 55 -60% общего объема крови. Состоит она на 90 - 91% из воды, 9 - 10% приходится на сухой остаток, в котором имеются белки и соли. В плазме содержатся также глюкоза, молочная кислота, жирные кислоты, ферменты, некоторые микроэлементы.
Основную массу форменных элементов крови составляют эритроциты. Они выполняют ряд важных функций: 1) поглощение кислорода в легких и перенос его в капилляры, поглощение углекислоты в капиллярах тканей и доставка ее в легкие; 2) сохранение активной реакции крови; 3) поддержание ионного состава крови; 4) участие в водно-солевом обмене; 5) адсорбция токсинов.
При облучении крови количество эритроцитов ежесуточно снижается и за месяц их потеря может достигнуть 25% от исходного уровня. В результате развивающаяся анемия замедляет процессы репарации, а дефицит кислорода в костном мозге нарушает его способность восстанавливать кроветворение.
Лейкоциты - типичные ядерные клетки. Они выполняют защитную функцию в борьбе с инфекцией или чужеродным телом.
При облучении ионизирующими лучами количество лейкоцитов уменьшается пропорционально полученной дозе. Сокращение лейкоцитов снижает сопротивляемость организма человека инфекциям.
Лимфоциты - наиболее чувствительный показатель тяжести поражения от ионизирующих излучений. Сокращение числа лимфоцитов наблюдается сразу после облучения и достигает максимума на 1 - 3 сутки. Этим самым подавляется иммунная система.
Тромбоциты играют важную роль в процессе свертывания крови. При облучении радиацией их количество падает, а следовательно появляются проблемы со свертываемостью крови.
Под действием радиации могут возникнуть нарушения кроветворения на различных этапах клеточного обновления. Может быть временное прекращение деления клеток, гибель малодифференцированных клеток, нарушение продолжительности созревания, жизни большинства зрелых функционирующих клеток. Самым серьезным из названных заболеваний является нарушение дифференциации клеток, приводящее к лейкозу.
Лейкоз - это болезнь, характеризующаяся избыточным содержанием в крови неполноценных белых клеток (эритроцитов, лейкоцитов, тромбоцитов). Эту болезнь называют "раком" крови или белокровием.
Выводы: 1. Молекулы ДНК и клетки человека могут противостоять радиоактивному облучению, но только при определенной интенсивности облучения и времени действия.
2. Гибель отдельных клеток не означает гибели органа или организма в целом, вместо погибшей стимулируется деление новых. Появление живой, но измененной клетки вызывает опасность развития рака.
3. Наиболее разрушительными для организма человека являются радикалы воды.
Особенностью раковых заболеваний является то, что у них значительный латентный период, т.е. рак, проявляется не сразу, а через значительное время. Особенности заболевания различными видами рака демонстрируется рис. 2.5.
Лейкоз
Различные виды рака
Число лет после облучения
0 2 6 10 20 30
Рис.2.5. Время появления злокачественных опухолей с момента облучения
- Министерство образования Республики Беларусь
- Ф. Жолио-Кюри Введение
- Тема 1. Физическая природа и источники радиационной опасности для человека, объектов и природной среды
- 1.1. Радиоактивное превращение ядер
- 1.1.1. Общие сведения об атоме и атомном ядре
- 1.1.2. Явление радиоактивности
- 1. Выбрасывание электрона и антинейтрино - - - распад;
- Примечание. Так как массы выбрасываемых электрона, позитрона, нейтрино и антинейтрино крайне малы по сравнению с массой протонов и нейтронов, то массовое число атома можно считать неизменным.
- 1.1.3. Основной закон радиоактивного распада радионуклида
- 1.1.4. Закон изменения активности радионуклидных рядов
- 1.1.5. Закон спада радиоактивности продуктов ядерного деления
- 1Ч 150 суток tн
- Вопросы для самоконтроля:
- 1.2. Виды ионизирующих излучений, их характеристики и взаимодействие с веществом
- 1.2.1. Краткая характеристика ионизирующих излучений
- 1.2.2. Взаимодействие ионизирующих излучений с веществом
- Косл ≈ 2х/d (1.39.)
- Пробеги бета-частиц
- Пробеги альфа-частиц в воздухе, биологической ткани и алюминии
- Воздействие радиоактивных излучений на физические свойства некоторых материалов
- Воздействие проникающей радиации на элементы схем
- Вопросы для самоконтроля:
- 1.2.3. Хакрактеристики ионизирующих излучений. Единицы измерения
- Коэффициенты качества излучения
- Взвешивающие коэффициенты wt*
- Вопросы для самоконтроля:
- 1.2.4. Основные способы определения и измерения ионизирующих излучений
- Классификация приборов
- Радиометрия внутреннего облучения человека
- Вопросы для самоконтроля:
- 1.3. Источники ионизирующих излучений
- 1.3.1. Космическое излучение
- 1.3.2. Земная радиация
- Радиоактивное семейство урана-235 (ряд актиноурана)
- Природные радионуклиды в почвах
- Содержание радионуклидов в некоторых веществах, Бк/кг
- Распределение активности некоторых радионуклидов в различных частях биосферы
- Содержание калия-40 в окружающей среде
- Средняя удельная активность калия-40 и рубидия-87 в тканях взрослого мужчины и создаваемые годовые эквивалентные дозы
- 1.3.3. Антропогенные источники ионизирующих излучений
- Область применения и вид используемых закрытых источников ионизирующего излучения в различных областях
- Атомная электростанция, как источник радиационной опасности
- Управления
- % Выхода осколков
- 80 105 130 150 Атомный номер изотопов
- Ядерные боеприпасы, как источники радиационной опасности
- Вопросы для самоконтроля:
- Глава 2. Основы радиационной безопасности биологических систем
- 2.1. Биологическое действие ионизирующих излучений
- 2.1.1. Воздействие энергии ионизирующих излучений на биологическую ткань
- Физический этап (поглощение энергии)
- Биологическое действие ионизирующих излучений
- Радиационные повреждения
- Молекула воды
- Хромосома
- Молекула белка
- Вопросы для самоконтроля:
- 2.1.3. Радиочувствительность. Реакция органов и систем человека на облучение
- Некоторые особенности радиоустойчивости органов при внешнем облучении
- Диапазоны радиочувствительности различных организмов
- Действие излучения на человека при облучении всего организма
- Реакция организма на облучение. Радиационные синдромы
- Некоторые особенности реакции органов и систем при внутреннем облучении
- Кровеносная система
- Вопросы для самоконтроля:
- 2.1.4. Детерминированные и стохастические эффекты. Степени лучевой болезни
- Детерминированные эффекты
- Приблизительные пороговые дозы для детерминированных эффектов в различных тканях, основанные на реакциях пациентов на стандартное фракционированное рентгеновское или гамма-облучение
- Острая лучевая болезнь (олб)
- Оценки порогов детерминированных эффектов у взрослых людей в некоторых органах при воздействии излучения с малой линейной передачей энергии
- Диапазон доз, связанных с отдельными радиационно индуцированными синдромами и смертью людей, подвергшихся острому лучевому воздействию с малой линейной передачей энергии равномерно по всему телу
- Показатели степени тяжести олб в фазе первичной острой реакции
- Показатели степени тяжести олб в латентной фазе
- Стохастические эффекты
- Хроническая лучевая болезнь (хлб)
- Вопросы для самоконтроля:
- 2.2. Принципы и критерии радиационной безопасности
- 2.2.1. Международные нормы радиационной безопасности
- Проблемы оценки малых доз облучения
- Номинальные коэффициенты вероятности стохастических эффектов
- Коэффициенты вероятности рака для отдельных органов
- Принципы, цели и критерии радиационной безопасности
- 3) Облучение отдельных лиц, в сумме от всех видов деятельности не должно превышать установленных дозовых пределов (принцип нормирования индивидуальной дозы).
- Нормирование облучения для практической деятельности
- Пределы годового поступления некоторых радионуклидов для населения
- Вмешательство. Уровни вмешательства
- Диапазон, в котором устанавливаются оперативные уровни вмешательства по принципу оптимизации
- Критерии для принятия решений о переселении и ограничении потребления загрязненных продуктов
- Уровни для изъятия и защиты пищевых продуктов
- Вопросы для самоконтроля:
- Требования к ограничению техногенного облучения в контролируемых условиях
- Требования к защите от природного облучения в производственных условиях
- Требования к ограничению облучения населения
- Значения дозовых коэффициентов, пределов годового поступления с воздухом, допустимой объемной активности во вдыхаемом воздухе и уровни вмешательства
- Значения дозовых коэффициентов, пределов годового поступления и уровни вмешательства
- Ограничение медицинского облучения.
- Требования по ограничению облучения населения в условиях радиационной аварии
- Требования к контролю за выполнением норм
- Значения допустимых уровней радиационного воздействия
- Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты, част./(см2▪ мин)
- Вопросы для самоконтроля:
- 2.2.3. Оценка радиационной обстановки
- Оценка радиационной обстановки при авариях на аэс методом прогнозирования
- 1. Построение возможных зон радиоактивного заражения (загрязнения)
- Характеристики зон радиоактивного заражения (загрязнения) местности при авариях на аэс
- 14 Мрад/ч 140 мрад/ч 1,4 рад/ч 4,2 рад/ч
- 4. Определение возможных доз внутреннего и внешнего облучения людей на этапе спада радиации по закону Вэя-Вигнера.
- Размеры прогнозируемых зон загрязнения местности на следе облака при аварии на аэс, км
- Дозы облучения, получаемые людьми при открытом расположении в середине зоны от аварии на аэс, 10-4Гр
- Дозы облучения, получаемые людьми при открытом расположении в середине зоны при аварии на аэс, 10-2 Гр
- Суммарные радиационные потери (%) в зависимости от полученной дозы облучения
- Оценка радиационной обстановки после аварии на аэс по данным разведки
- Зависимость линейного коэффициента ослабления гамма- и бета - излучения воздухом от энергии излучения
- Методика прогнозирования и оценки радиационного загрязнения продукции растениеводства и животноводства
- Оценка радиационной обстановки при взрывах ядерных боеприпасов
- Населенный пункт 8 р/ч
- Размеры зон радиоактивного заражения на следе радиоактивного облака
- Вопросы для самоконтроля:
- Глава 3.
- Авария, ее развитие и ликвидация
- 3.1.3. Выбросы и особенности радиоактивного загрязнения местности Республики Беларусь
- Изотопы, попавшие в выброс в результате чернобыльской аварии (оценки на январь 2000 г.)
- Цезий-137 Йод-131
- 1157 Более 40
- Цирконий-90
- 3.9. Схема распада плутония-239
- Америций-241
- 14,4 Года
- Особенности миграции радионуклидов и прогнозирование радиоактивного загрязнения местности
- Вопросы для самоконтроля:
- 3.2. Последствия радиоактивного загрязнения местности для республики беларусь
- 3.2.1. Социально-экономические потери Республики Беларусь
- 3.2.2. Последствия катастрофы на Чернобыльской аэс для здоровья населения Республики Беларусь
- Некоторые выводы из оценки заболеваний населения.
- 3.2.3. Последствия катастрофы на Чернобыльской аэс для животного мира
- 3.2.4. Последствия катастрофы на Чернобыльской аэс для растительного мира
- Вопросы для самоконтроля:
- 4.2. Краткая характеристика мероприятий, направленных на выживание населения в условиях радиоактивного загрязнения местности
- 4.2.1. Эвакуация и отселение
- 4.2.2. Дозовые нагрузки, установленные для населения
- 4.2.3. Организация медицинской помощи, пострадавшим от радиации
- 4.2.4. Система радиационного мониторинга в Республике Беларусь
- Минсельхоз-прод
- Госкомпром (строительные материалы)
- Минлесхоз (дары леса, лесо- сечный фонд)
- Ускоренное выведение радионуклидов из организма
- Применение принципа конкурентного замещения
- Употребление продуктов, слабо аккумулирующих радионуклиды
- Насыщение организма микроэлементами
- Употребление повышенного количества отдельных витаминов
- Рациональное питание
- Употребление пищевых добавок
- Периодическая очистка органов и систем человека от шлаков
- 4.2.6. Мероприятия по повышению адаптационно-компенсаторных возможностей организма человека
- 4.2.7. Санитарно-гигиенические мероприятия
- Вопросы для самоконтроля:
- 4.2. Ликвидация последствий радиоактивного загрязнения местности
- 4.2.1. Дезактивация территории, объектов, техники и продуктов питания
- Общая методика оценки дезактивации
- Способы дезактивации
- Жидкостные
- Дезактивация зданий и сооружений
- Дезактивация транспорта
- Дезактивация одежды
- Дезактивация дорог, грунта, воды, лугов и сельскохозяйственных угодий
- Санитарная обработка людей
- Дезактивация продуктов питания
- Мясные продукты
- Молочные продукты
- Овощи и фрукты
- Грибы и ягоды
- Витебск
- Растениеводство
- Содержание цезия-137 (Ки/кг*10-9) в урожаях сельскохозяйственных культур в зависимости от обеспеченности дерново-подзолистых почв обменным калием при плотности загрязнения 1Ки/км2
- Допустимые уровни содержания цезия-137 и стронция-90 в некоторых кормах
- Животноводство
- Переход радионуклидов из суточного рациона в продукцию животноводства (в % на 1 кг продукции)
- Вопросы для самоконтроля:
- Толщина слоев половинного ослабления ионизирующих излучений для различных материалов
- Некоторые множители и приставки для образования кратных и дольных единиц
- Соотношение между единицами си и внесистемными единицами в области ионизирующих излучений
- Радиоактивное семейство урана-235 (ряд актиния)
- 207 Pb(стабильный)
- Радиоактивное семейство урана-238 (ряд урана-радия)
- 206 Pb (стабильный)
- Радиоактивное семейство тория-232
- 208 Pb (стабильный)
- Республиканские допустимые уровни содержания радионуклидов цезия-137 и стронция-90 в пищевых продуктах и питьевой воде (рду-99)
- Глава 1. Физическая природа и источники радиационной опасности для человека, объектов и природной среды …………………… ………….. 6
- Глава 2. Основы радиационной безопасности биологических систем……..66
- Глава 3.Авария на Чернобыльской аэс и ее последствия
- Глава 4. Комплекс мероприятий по выживанию населения в условиях