Строение молекулы и свойства воды
Аномальные свойства воды предполагают существование прочных сил между молекулами воды. Это можно объяснить уже при рассмотрении природы единичной молекулы воды, а затем и группы молекул. Шесть валентных электронов кислорода в молекуле воды гибридизированы в четырех Sp3-орбиталях, которые вытянуты к углам, образуя тетраэдр.
Две гибридные орбитали образуют О—Н ковалентные связи с углом 105°, тогда как другие две орбитали имеют неподеленные электронные пары. Ковалентные О—Н связи, благодаря высокой электроотрицательности кислорода, частично (на 40%) имеют ионный характер.
Таким образом, молекула воды имеет два отрицательных и два положительных заряда по углам тетраэдра. Вследствие этого, каждая
465
молекула воды тетраэдричес-ки координирована с четырьмя другими молекулами воды благодаря водородным связям (см. рис. 10.2). Энергия диссоциации водородной связи ~25 кДж/моль.
Рис. 10.2. Тетраэдрическая координация молекул воды
Одновременное присутствие в молекуле воды двух доноров и двух акцепторов делает возможной ассоциацию в трехмерную сеть, стабилизированную водородными связями, что обеспечивает большую силу взаимодействия между молекулами. Эта структура объясняет особые физические свойства воды, необычные для малых молекул. Так, например, спирт и соединения с изоэлектрическими диполями, такие как HF или NH3, образуют, в отличие от воды, только линейную или двухмерную ассоциацию.
Частичная поляризация Н—О связи в дальнейшем усиливается за счет образования водородных связей. Поэтому дипольный момент комплекса, состоящего из увеличенного числа водных молекул (мультимолекулярный диполь), тем больше, чем больше молекул ассоциировано и, естественно, больше дипольного момента единичной молекулы. Как следствие, диэлектрическая постоянная воды оказывается большой и превышает величину, которая может быть вычислена на основе дипольного момента единичной молекулы.
Транспорт (перенос) протона осуществляется вдоль водородной связи. Это поистине прыжок протона от одной молекулы воды к соседней молекуле воды. Независимо от того, получен ли протон путем диссоциации воды или будет получен от кислоты, он будет погружаться в орбита-ли неподеленных электронов молекулы, образуя гидратированный ион водорода Н3О+(ион гидроксония) с исключительно сильной водородной связью (энергия диссоциации — 100 кДж/моль):
Подобный механизм действует и в транспорте ионов ОН-, который осуществляется вдоль водородных связей:
466
Переход протона от одного атома кислорода к другому осуществляется чрезвычайно быстро (V>1012c-1), поэтому подвижность протона весьма велика. Она превышает подвижность других ионов в 4—5 раз и соизмерима только с подвижностью ионов ОН-, которая, однако, примерно на 40% меньше. При этом скорость протонов во льду примерно в 100 раз больше, чем в воде.
Способность воды образовывать трехмерные водородные связи, для разрушения которых необходима дополнительная энергия, объясняет рассмотренные выше необычные свойства воды, например высокие значения теплоемкости, точек плавления и кипения, поверхностного натяжения и теплот фазовых переходов.
Вода может влиять на конформацию макромолекул, если там имеют место какие-либо нековалентные связи, которые стабилизируют конформацию большой молекулы. Эти нековалентные связи могут быть трех видов: водородные, ионные и неполярные связи. В белках существует конкуренция между CO...HN водородными связями и вода-амид водородными связями. Чем больше способность растворителя к образованию водородных связей, тем слабее CO...HN связь. В водной среде теплота образования или разрыва этой связи равна 0. Это означает, что CO...HN водородная связь не может обеспечить стабилизацию в водном растворе. Конкурирующая водородная связь от Н2О ослабляет термодинамическую тенденцию к образованию CO...HN водородных связей. Водные молекулы вокруг неполярных групп (молекул) становятся более упорядоченными, приводя к потере энтропии, и в результате возникает тенденция к ассоциации отдельных неполярных групп в водной среде с другими, большими чем водные, молекулами (гидрофобное взаимодействие). Концепция гидрофобной связи схематично показана на рис. 10.3.
Рис. 10.3. Образование гидрофобной связи
С химической точки зрения вода является весьма реакционноспособным веществом. Она соединяется со многими оксидами металлов и неметаллов,
467
взаимодействует с активными металлами и вступает в различные другие реакции самого разнообразного характера.
Превращения белков, Липидов, углеводов с участием воды имеют важное значение в пищевых технологиях.
Помимо химических реакций, в которые вступает вода, при растворении веществ в воде имеют место взаимодействия физико-химического характера. Ниже мы кратко рассмотрим взаимодействие воды с ионами и ионными группами, группами, обладающими способностью к образованию водородных связей, и с неполярными веществами (группами). Эти взаимодействия необходимо принимать во внимание при рассмотрении классификации видов влаги в пищевых продуктах и ее причастности к химическим, биохимическим и микробиологическим изменениям в продукте при хранении (см. раздел 10.3).
468
465::466::467::468::Содержание
468::469::470::Содержание
- Содержание
- Глава 1. Химия пищевых веществ и питание человека 6
- Глава 2. Белковые вещества 14
- Глава 3. Углеводы 111
- Глава 4. Липиды (жиры и масла) 175
- Глава 5. Минеральные вещества 211
- Глава 6. Витамины 231
- Глава 7. Пищевые кислоты 248
- Глава 8. Ферменты 261
- Глава 9. Пищевые и биологически активные добавки 330
- Глава 10. Вода 444
- Глава 11. Безопасность пищевых продуктов 475
- Глава 12. Основы рационального питания 540
- Предисловие ко второму изданию
- Глава 1. Химия пищевых веществ и питание человека
- Глава 2. Белковые вещества
- 2.1. Белки в питании человека. Проблема белкового дефицита на земле
- 2.2. Белково-калорийная недостаточность и ее последствия. Пищевые аллергии
- 2.3. Аминокислоты и их некоторые функции в организме
- 2.4. Незаменимые аминокислоты. Пищевая и биологическая ценность белков
- 2.5. Строение пептидов и белков. Физиологическая роль пептидов
- 2.6 Белки пищевого сырья
- Белки масличных культур
- Белки картофеля, овощей и плодов
- Белки мяса и молока
- 2.7. Новые формы белковой пищи. Проблема обогащения белков лимитирующими аминокислотами
- 2.8. Функциональные свойства белков
- 2.9. Превращения белков технологическом потоке
- 2.10. Качественное и количественное определение белка
- Контрольные вопросы
- Глава 3. Углеводы
- 3.1. Общая характеристика углеводов
- Моносахариды
- Полисахариды
- 3.2. Физиологическое значение углеводов
- Усваиваемые и неусваиваемые углеводы
- Углеводы в пищевых продуктах
- 3.3. Превращения углеводов при производстве пищевых продуктов Гидролиз углеводов
- Реакции дегидратации и термической деградации углеводов
- Реакции образования коричневых продуктов
- Процессы брожения
- 3.4. Функции моносахаридов и олигосахаридов в пищевых продуктах Гидрофильность
- Связывание ароматических веществ
- Образование продуктов неферментативного потемнения и пищевого аромата
- Сладость
- 3.5. Функции полисахаридов в пищевых продуктах Структурно-функциональные свойства полисахаридов
- Крахмал
- Гликоген
- Целлюлоза
- Гемицеллюлозы
- Пектиновые вещества
- 3.6. Методы определения углеводов в пищевых продуктах
- Контрольные вопросы
- Глава 4. Липиды (жиры и масла)
- 4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
- 4.2. Реакции ацилглицеринов с участием сложноэфирных групп Гидролиз триацилглицеринов
- Переэтерификация
- 4.3. Реакции ацилглицеринов с участием углеводородных радикалов Присоединение водорода (гидрирование ацилглицеринов)
- Окисление ацилглицеринов
- 4.4. Свойства и превращения глицерофосфолипидов
- 4.5. Методы выделения липидов из сырья и пищевых продуктови их анализ
- 4.6. Пищевая ценность масел и жиров
- Контрольные вопросы
- Глава 5. Минеральные вещества
- 5.1. Роль минеральных веществ в организме человека
- 5.2. Роль отдельных минеральных элементов Макроэлементы
- Микроэлементы
- 5.3. Влияние технологической обработки на минеральный состав пищевых продуктов
- 5.4. Методы определения минеральных веществ
- Электрохимические методы анализа
- Контрольные вопросы
- Глава 6. Витамины
- 6.1. Водорастворимые витамины
- 6.2. Жирорастворимые витамины
- 6.3. Витаминоподобные соединения
- 6.4. Витаминизация продуктов питания
- Контрольные вопросы
- Глава 7. Пищевые кислоты
- 7.1. Общая характеристика кислот пищевых объектов
- 7.3. Пищевые кислоты и их влияние на качество продуктов
- 7.4. Регуляторы кислотности пищевых систем
- 7.5. Пищевые кислоты в питании
- 7.6. Методы определения кислот в пищевых продуктах
- Глава 8. Ферменты
- 8.1. Общие свойства ферментов
- Ферментативная кинетика
- 8.2. Классификация и номенклатура ферментов
- Оксидоредуктазы
- Гидролитические ферменты
- 8.3. Применение ферментов в пищевых технологиях
- Мукомольное производство и хлебопечение
- Производство крахмала и крахмалопродуктов
- Кондитерское производство
- Производство плодово-ягодных соков, безалкогольных напитков и вин
- Спиртные напитки и пивоварение
- 8.4. Иммобилизованные ферменты
- 8.5. Ферментативные методы анализа пищевых продуктов
- Глава 9. Пищевые и биологически активные добавки
- 9.1. Общие сведения о пищевых добавках
- Общие подходы к подбору технологических добавок
- О безопасности пищевых добавок
- 9.2. Вещества, улучшающие внешний вид пищевых продуктов
- Цветокорректирующие материалы
- 9.3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов
- Эмульгаторы
- 9.4. Вещества, влияющие на вкус и аромат пищевых продуктов
- Подслащивающие вещества
- Ароматизаторы
- Пищевые добавки, усиливающие и модифицирующие вкус и аромат
- 9.5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья и готовых продуктов
- Консерванты
- Антибиотики
- Пищевые антиокислители
- 9.6. Биологически активные добавки
- Глава 10. Вода
- 10.1. Физические и химические свойства воды и льда Физические свойства воды и льда
- Диаграмма состояния воды
- Строение молекулы и свойства воды
- Взаимодействие вода — растворенное вещество
- Структура и свойства льда
- 10.2. Свободная и связанная влага в пищевых продуктах
- Рассмотрим некоторые примеры.
- 10.3. Активность воды
- Изотермы сорбции
- Активность воды и стабильность пищевых продуктов
- 10.4. Роль льда в обеспечении стабильности пищевых продуктов
- 10.5. Методы определения влаги в пищевых продуктах Определение общего содержания влаги
- Глава 11. Безопасность пищевых продуктов
- 11.1. Классификация чужеродных веществ и пути их поступления в продукты
- 11.2. Окружающая среда - основной источник загрязнения сырья и пищевых продуктов
- Меры токсичности веществ
- Токсичные элементы
- Радиоактивное загрязнение
- Диоксины и диоксинподобные соединения
- Полициклические ароматические углеводороды
- Загрязнения веществами, применяемыми в растениеводстве
- Загрязнение веществами, применяемыми в животноводстве
- 11.3. Природные токсиканты
- Микотоксины
- Методы определения микотоксинов и контроль за загрязнением пищевых продуктов
- 11.4. Антиалиментарные факторы питания
- 11.5. Метаболизм чужеродных соединений
- 11.6. Фальсификация пищевых продуктов Фальсификация: аспект безопасности
- Генетически модифицированные продукты питания
- Контрольные вопросы
- Глава 12. Основы рационального питания
- 12.1. Физиологические аспекты химии пищевых веществ
- 12.2. Питание и пищеварение
- Основные пищеварительные процессы
- Схемы процессов переваривания макронутриентов
- Метаболизм макронутриентов
- 12.3. Теории и концепции питания
- Первый принцип рационального питания
- Второй принцип рационального питания
- Третий принцип рационального питания
- 12.4. Рекомендуемые нормы потребления пищевых веществ и энергии
- 12.5. Пищевой рацион современного человека. Основные группы пищевых продуктов
- 12.6. Концепция здорового питания. Функциональные ингредиенты и продукты
- Список использованной литературы