3.5. Функции полисахаридов в пищевых продуктах Структурно-функциональные свойства полисахаридов
Все полисахариды, присутствующие в пищевых продуктах, выполняют ту или иную полезную роль, связанную с их молекулярной архитектурой, размером и наличием межмолекулярных взаимодействий, обусловленных, в первую очередь, водородными связями. Целый ряд полисахаридов являются неусваиваемыми. Это, главным образом, целлюлоза, гемицеллюлоза и пектиновые компоненты клеточных стенок овощей, фруктов и семян. Эти компоненты придают многим продуктам плотность, хрупкость, а также приятное ощущение во рту. И, кроме того, они важны (как пищевые волокна) в нормальной жизнедеятельности человеческого организма.
Полисахариды, присутствующие в пищевых продуктах, выполняют важную функцию, которая заключается в обеспечении их качества и текстуры: твердости, хрупкости, плотности, загустевания, вязкости, липкости, гелеобразующей способности, ощущения во рту. Именно благодаря полисахаридам образуется структура пищевого продукта – мягкая или хрупкая, набухшая или желеобразная.
В принципе, полисахариды должны быть растворимы, поскольку они состоят из гликозидных единиц (гексоз или пентоз), а каждая гликозидная единица имеет несколько точек для образования водородных связей.
168
Так, например, в глюкане пять кислородов в цепи могут участвовать в образовании водородных связей:
Каждый гидроксильный водород или кислород может потенциально связывать молекулу воды, и таким образом каждая единица в цепи может быть полностью гидратирована, что должно было бы привести к растворимости всей молекулы. Но полисахариды не растворимы в воде, если доступ к воде ограничен. Это имеет место у полностью линейных молекул, где цепи полностью растянуты и, вследствие этого, могут тесно примыкать друг к другу вдоль всей длины. Это, в первую очередь, относится к целлюлозе. Одна линейная молекула может за счет водородных связей связываться с другой линейной молекулой, образуя кристаллическую структуру. При таком упорядоченном устройстве не остается мест связывания для образования в системе вода–целлюлоза водородных связей, и поэтому эти кристаллические области нерастворимы в воде и очень стабильны. Известно, например, что деревья растут и существуют веками. Тем не менее, не вся целлюлозная молекула вовлекается в кристаллические образования, благодаря чему остаются области, доступные для образования водородных связей между молекулой целлюлозы и водой. Это аморфные, неструктурированные области, которые являются высокогидратированными. Подобное имеет место в том случае, если некоторые секции одной целлюлозной молекулы связаны с некоторыми секциями другой целлюлозной молекулы в "спагетти-манере", делая взаимодействие между цепями невозможным.
Если единообразные линейные молекулы перенесены в раствор при нейтральном значении рН, то они могут взаимодействовать между собой таким образом, как при образовании кристаллических зон в целлюлозе, то есть вода будет исключена из зон связывания. Если температура недостаточна высока, чтобы растянуть сегменты цепей, то эти комбинированные сегменты не только будут оставаться, но и могут даже расти, вовлекая соседние единицы других цепей в образование зон связывания. Если много молекул вносят вклад в образование этих зон, то со временем может возникнуть частица, которая достигает размера, при котором гравитационный эффект заставляет ее осаждаться. Этот эффект, наблюдающийся при стоянии амилозных клейстеров, когда длинные и сравнительно неширокие молекулы начинают кристаллизоваться, называют ретроградацией крахмала. Процесс исключения воды, который сопровождает ретроградацию, называется синерезисом.
В ряде случаев зоны взаимодействия не растут по размеру так, как описано выше, а остаются в виде сегментов только двух молекул. Новая зона взаимодействия одной из этих молекул с новой молекулой образуется совершенно в другом месте. Таким образом, каждая полисахаридная молекула будет участвовать в двух и более зонах соединения. Эти молекулярные ассоциации образуют трехмерную сетку с растворителем, в которой молекулы воды распределены везде (см. гл. 10). В результате образуется уникальная структура: вначале был раствор, затем образовался гель. Образование гелей, например, имеет место при быстром охлаждении концентрированных амилозных крахмальных клейстеров.
Сила геля зависит от силы зон связывания, которые держат всю структуру вместе. Если протяженность зон связывания небольшая, силы, удерживающие цепи соседних молекул, невелики, и молекулы могут разделиться под внешним давлением или при небольшом увеличении температуры, которая способствует увеличению движения полимерных цепей. Такие гели называют слабыми, они термически нестабильны. Если протяженность зон связывания велика, то силы, удерживающие цепи соседних молекул достаточны, чтобы противостоять воздействию температуры и внешнего давления. Такие гели называют твердыми, они термостабильны. Силой гелей можно управлять контролируя зоны связывания, что очень важно для технологии многих пищевых продуктов.
Разветвленные полисахариды (например, амилопектин) или гетерополигликаны не могут тесно располагаться друг к другу, поэтому и не могут формировать зоны связывания существенных размеров и силы, чтобы образовать гель. Такие молекулы просто образуют вязкие стабильные растворы. Это же относится к заряженным полисахаридам, содержащим –СООН группы. Наличие отрицательного заряда приводит к отталкиванию приближающихся сегментов цепей и таким образом предотвращает образование зон связывания.
Все растворимые полисахариды дают вязкие растворы из-за большого размера их молекул. Среди натуральных пищевых полисахаридов наименее вязкими являются растворы гуммиарабика. Вязкость зависит от размера молекулы, формы и заряда. Если молекула имеет заряд за счет ионизации присутствующих в ней карбоксильных групп, то эффект влияния заряда может быть очень большим во всех случаях, кроме очень кислых растворов. Для карбоксилсодержащих полисахаридов этот эффект минимален при рН 2,8, когда ионизация –СООН групп подавлена и полисахарид ведет себя как незаряженная молекула. Вязкость зависит от присутствия полиэлектролитов, поскольку они влияют на конфигурацию и размер молекулы, и природы посторонних присутствующих веществ, так как их наличие может оказывать тормозящее действие на истечение полимера.
С точки зрения стерических причин, все линейные молекулы, несут они заряд или нет, требуют для вращения больше пространства, чем высокоразветвленные той же молекулярной массы. Таким образом, как правило, растворы линейных полисахаридов имеют большую вязкость, чем разветвленных. Отсюда, с точки зрения обеспечения вязкости, структуры или гелеобразования в пищевых продуктах, более полезны линейные полисахариды.
Все, что заставляет нерастворимые линейные молекулы становиться более вытянутыми, вызывает увеличение вязкости, и, соответственно, если в результате какого-либо воздействия молекулы становятся менее линейными, то есть более компактными или свернутыми, вязкость раствора уменьшается. В пищевых продуктах негелеобразующие компоненты могут изменять вязкость путем их влияния на полисахариды. Так, сахара, связывая доступные молекулы воды, уменьшают их количество для взаимодействия с полисахаридами. Это приводит к тому, что полисахаридные молекулы сворачиваются за счет образования между ними водородных связей. В результате может образоваться гель или происходит усиление геля, как например, в геле пектина. Соли могут снижать отталкивающий эффект, приводя к скручиванию полисахаридных молекул, укрупнению и даже осаждению их.
- Содержание
- Глава 1. Химия пищевых веществ и питание человека 6
- Глава 2. Белковые вещества 14
- Глава 3. Углеводы 111
- Глава 4. Липиды (жиры и масла) 175
- Глава 5. Минеральные вещества 211
- Глава 6. Витамины 231
- Глава 7. Пищевые кислоты 248
- Глава 8. Ферменты 261
- Глава 9. Пищевые и биологически активные добавки 330
- Глава 10. Вода 444
- Глава 11. Безопасность пищевых продуктов 475
- Глава 12. Основы рационального питания 540
- Предисловие ко второму изданию
- Глава 1. Химия пищевых веществ и питание человека
- Глава 2. Белковые вещества
- 2.1. Белки в питании человека. Проблема белкового дефицита на земле
- 2.2. Белково-калорийная недостаточность и ее последствия. Пищевые аллергии
- 2.3. Аминокислоты и их некоторые функции в организме
- 2.4. Незаменимые аминокислоты. Пищевая и биологическая ценность белков
- 2.5. Строение пептидов и белков. Физиологическая роль пептидов
- 2.6 Белки пищевого сырья
- Белки масличных культур
- Белки картофеля, овощей и плодов
- Белки мяса и молока
- 2.7. Новые формы белковой пищи. Проблема обогащения белков лимитирующими аминокислотами
- 2.8. Функциональные свойства белков
- 2.9. Превращения белков технологическом потоке
- 2.10. Качественное и количественное определение белка
- Контрольные вопросы
- Глава 3. Углеводы
- 3.1. Общая характеристика углеводов
- Моносахариды
- Полисахариды
- 3.2. Физиологическое значение углеводов
- Усваиваемые и неусваиваемые углеводы
- Углеводы в пищевых продуктах
- 3.3. Превращения углеводов при производстве пищевых продуктов Гидролиз углеводов
- Реакции дегидратации и термической деградации углеводов
- Реакции образования коричневых продуктов
- Процессы брожения
- 3.4. Функции моносахаридов и олигосахаридов в пищевых продуктах Гидрофильность
- Связывание ароматических веществ
- Образование продуктов неферментативного потемнения и пищевого аромата
- Сладость
- 3.5. Функции полисахаридов в пищевых продуктах Структурно-функциональные свойства полисахаридов
- Крахмал
- Гликоген
- Целлюлоза
- Гемицеллюлозы
- Пектиновые вещества
- 3.6. Методы определения углеводов в пищевых продуктах
- Контрольные вопросы
- Глава 4. Липиды (жиры и масла)
- 4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
- 4.2. Реакции ацилглицеринов с участием сложноэфирных групп Гидролиз триацилглицеринов
- Переэтерификация
- 4.3. Реакции ацилглицеринов с участием углеводородных радикалов Присоединение водорода (гидрирование ацилглицеринов)
- Окисление ацилглицеринов
- 4.4. Свойства и превращения глицерофосфолипидов
- 4.5. Методы выделения липидов из сырья и пищевых продуктови их анализ
- 4.6. Пищевая ценность масел и жиров
- Контрольные вопросы
- Глава 5. Минеральные вещества
- 5.1. Роль минеральных веществ в организме человека
- 5.2. Роль отдельных минеральных элементов Макроэлементы
- Микроэлементы
- 5.3. Влияние технологической обработки на минеральный состав пищевых продуктов
- 5.4. Методы определения минеральных веществ
- Электрохимические методы анализа
- Контрольные вопросы
- Глава 6. Витамины
- 6.1. Водорастворимые витамины
- 6.2. Жирорастворимые витамины
- 6.3. Витаминоподобные соединения
- 6.4. Витаминизация продуктов питания
- Контрольные вопросы
- Глава 7. Пищевые кислоты
- 7.1. Общая характеристика кислот пищевых объектов
- 7.3. Пищевые кислоты и их влияние на качество продуктов
- 7.4. Регуляторы кислотности пищевых систем
- 7.5. Пищевые кислоты в питании
- 7.6. Методы определения кислот в пищевых продуктах
- Глава 8. Ферменты
- 8.1. Общие свойства ферментов
- Ферментативная кинетика
- 8.2. Классификация и номенклатура ферментов
- Оксидоредуктазы
- Гидролитические ферменты
- 8.3. Применение ферментов в пищевых технологиях
- Мукомольное производство и хлебопечение
- Производство крахмала и крахмалопродуктов
- Кондитерское производство
- Производство плодово-ягодных соков, безалкогольных напитков и вин
- Спиртные напитки и пивоварение
- 8.4. Иммобилизованные ферменты
- 8.5. Ферментативные методы анализа пищевых продуктов
- Глава 9. Пищевые и биологически активные добавки
- 9.1. Общие сведения о пищевых добавках
- Общие подходы к подбору технологических добавок
- О безопасности пищевых добавок
- 9.2. Вещества, улучшающие внешний вид пищевых продуктов
- Цветокорректирующие материалы
- 9.3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов
- Эмульгаторы
- 9.4. Вещества, влияющие на вкус и аромат пищевых продуктов
- Подслащивающие вещества
- Ароматизаторы
- Пищевые добавки, усиливающие и модифицирующие вкус и аромат
- 9.5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья и готовых продуктов
- Консерванты
- Антибиотики
- Пищевые антиокислители
- 9.6. Биологически активные добавки
- Глава 10. Вода
- 10.1. Физические и химические свойства воды и льда Физические свойства воды и льда
- Диаграмма состояния воды
- Строение молекулы и свойства воды
- Взаимодействие вода — растворенное вещество
- Структура и свойства льда
- 10.2. Свободная и связанная влага в пищевых продуктах
- Рассмотрим некоторые примеры.
- 10.3. Активность воды
- Изотермы сорбции
- Активность воды и стабильность пищевых продуктов
- 10.4. Роль льда в обеспечении стабильности пищевых продуктов
- 10.5. Методы определения влаги в пищевых продуктах Определение общего содержания влаги
- Глава 11. Безопасность пищевых продуктов
- 11.1. Классификация чужеродных веществ и пути их поступления в продукты
- 11.2. Окружающая среда - основной источник загрязнения сырья и пищевых продуктов
- Меры токсичности веществ
- Токсичные элементы
- Радиоактивное загрязнение
- Диоксины и диоксинподобные соединения
- Полициклические ароматические углеводороды
- Загрязнения веществами, применяемыми в растениеводстве
- Загрязнение веществами, применяемыми в животноводстве
- 11.3. Природные токсиканты
- Микотоксины
- Методы определения микотоксинов и контроль за загрязнением пищевых продуктов
- 11.4. Антиалиментарные факторы питания
- 11.5. Метаболизм чужеродных соединений
- 11.6. Фальсификация пищевых продуктов Фальсификация: аспект безопасности
- Генетически модифицированные продукты питания
- Контрольные вопросы
- Глава 12. Основы рационального питания
- 12.1. Физиологические аспекты химии пищевых веществ
- 12.2. Питание и пищеварение
- Основные пищеварительные процессы
- Схемы процессов переваривания макронутриентов
- Метаболизм макронутриентов
- 12.3. Теории и концепции питания
- Первый принцип рационального питания
- Второй принцип рационального питания
- Третий принцип рационального питания
- 12.4. Рекомендуемые нормы потребления пищевых веществ и энергии
- 12.5. Пищевой рацион современного человека. Основные группы пищевых продуктов
- 12.6. Концепция здорового питания. Функциональные ингредиенты и продукты
- Список использованной литературы