Белки картофеля, овощей и плодов
Относительно низкое содержание азотистых веществ в картофеле (около 2%), овощах (1,0-2,0%) и плодах (0,4- 1,0%) свидетельствует о том, что данные виды пищевого растительного сырья не играют значительной роли в обеспечении белком продуктов питания (табл. 2.11). Исключение составляет картофель, который, несмотря на невысокое содержание белка, как источник азотистых соединений имеет более существенное значение. Если учесть, что потребление картофеля в среднем составляет 330 г в день, то с данным видом продукта удовлетворяется 6-8% общей суточной потребности человека в белке. Количество белкового азота в клубнях картофеля обнаруживается в 1,5-2,5 раза больше, чем небелкового, тогда как в овощах и плодах, наоборот - менее 50% (например, в капусте 40%, винограде 7%). Небелковый азот картофеля представлен аминным (67-130 мг%) и нитратным азотом с аммиаком, которые от общего азота в клубнях составляют 18-31 и 10- 15%, соответственно. Сорта картофеля в большей степени отличаются по содержанию небелкового азота, чем белкового, и прежде всего по количеству свободных аминокислот. Среди них преобладают аланин, лизин, гистидин, глутаминовая кислота и фенилаланин.
Белки картофеля являются биологически ценными белками, так как содержат все незаменимые аминокислоты. По отношению к белкам куриного яйца биологическая ценность белков картофеля равна 85%, по отношению к идеальному белку - 70%. Первыми лимитирующими аминокислотами белков картофеля являются метионин и цистеин, второй - лейцин.
Белки картофеля отличаются по растворимости и компонентному составу, определяемому электрофорезом. Большая часть белков картофеля (70%) представлена глобулинами, меньшая (30%) - альбуминами. Различия в электрофоретической гомогенности суммарных белков являются признаком сорта и используются в селекционной практике при выведении новых сортов картофеля с высокой урожайностью, устойчивостью к болезням и вредителям.
Среди овощных культур большим содержанием белка отличаются зеленый горошек (28,3-31,9%) и сахарная кукуруза (10,4-14,9% в расчете на сухой вес). Основную долю в зеленом горошке составляют глобулины (вицилин и легулин), в кукурузе - спирторастворимый зеин. У зеленого горошка одновременно отмечается высокое содержание альбуминов, которое в 2-3 раза выше, чем в зрелом горохе гладкозерных сортов. В процессе созревания горошка белки интенсивно накапливаются при снижении экстрактивного азота. В молочно-восковой стадии спелости в горошке содержится в 2,5-3 раза меньше глютелинов, чем при полной зрелости, количество более подвижного вицилина преобладает над легу-лином. К концу созревания, наоборот, количество вицилина снижается, а легулина увеличивается.
По сравнению с зерновой кукурузой овощная кукуруза содержит значительно больше альбуминов, глобулинов и проявляет тенденцию к меньшему содержанию щелочерастворимых белков. Содержание зеина составляет 21,1-37,2% от общего белка, что значительно меньше, чем в кукурузе других ботанических групп (41-58%). Особенность фракционного соста-иа зеленого горошка и кукурузы благоприятно отражается на их аминокислотном составе. Значительную долю аминокислот горошка составляют лейцин с изолейцином (15,4% от общего количества), фенилаланин (7,1 %), валин с метионином (5,2%), аргинин (10,5%) и треонин (5,2%). Для белков сахарной кукурузы характерно высокое содержание лейцина и изо-лейцина- 15,1%, аргинина 12,4%, глутаминовой кислоты 17,3%,аланина, глицина, серина 9,0%, гистидина 4,2%, лизина 1,1%. Высокое содержание в зеленом горошке и сахарной кукурузе лизина и аргинина объясняется повышенным количеством альбуминов, а в кукурузе - и пониженным содержанием биологически неполноценного зеина.
При различных температурных воздействиях белки обеих культур ведут себя по-разному. Нагрев зеленого горошка в течение 1 мин в воде при 98- 100°С уменьшает растворимость глобулинов на 80%, альбуминов - на 24% и увеличивает количество щелочерастворимой фракции (на 61 %). Замораживание при температуре -30...-196°С не оказывает существенного влияния на растворимость и компонентный состав белков. В процессе длительного хранения замороженного, но предварительно прогретого горошка изменяется фракционный состав и происходит денатурация белков.
Состав азотистых веществ и изменение его при хранении и переработке представляет определенный интерес и у перца и баклажан. Зрелые баклажаны обладают большим содержанием белковых веществ, чем перец: 1,55% и 0,76% соответственно, и более высоким уровнем отношения белковый/небелковый азот - 0,94/0,89. Более высокая способность баклажан к биосинтезу азотистых соединений подтверждается более высоким содержанием у них ДНК, РНК, фосфора и серы (в мг/г сухого вещества):
Баклажаны Перец
РНК ................................. 0,27-0,32 ..... 0,13-0,31
ДНК ................................. 0,21-0,36 ..... 0,14-0,22
Фосфор .............................. 5,5-7,2 ............ 2,5-7,1
Сера ................................... 2,2-2,9 ............ 0,9-2,5
Баклажаны более устойчивы к увяданию по сравнению с перцем, что связывают с большим накоплением в них белковых веществ.
Азотистые вещества картофеля, овощей и плодов имеют существенное значение для формирования питательных и органолептических свойств продуктов (вкуса, аромата, цвета, консистенции), стойкости при хранении и сохранности витаминов. Так, свободные аминокислоты принимают участие в реакциях, связанных с образованием аромата (реакции Майяра), нитраты в избыточных количествах ухудшают стойкость при хранении, а действие, например, пектолитических ферментов к концу созревания плодов обуславливает их размягчение. Некоторые из азотистых соединений выполняют роль ингибиторов протеаз и амилаз.
Ферменты, являясь белками, оказывают значительное влияние на потребительские свойства пищевых продуктов и полуфабрикатов, принимая участие в процессах созревания, дыхания при хранении сочного сырья и его переработке. Прежде всего это относится к оксидоредукта-зам и гидролазам (см. гл. 8). Сохранность овощей и плодов в процессе хранения зависит от активности анаэробных дегидрогеназ (алкогольде-гидрогеназы, дегидрогеназ яблочной, янтарной, лимонной кислот) и кис-лородактивирующих оксидоредуктаз. Способы хранения плодов и овощей предусматривают подавление активности указанных ферментов (исключение доступа кислорода, понижение температуры и т.д.). Нежелательным процессом при хранении является реакция окисления ненасыщенных жирных кислот, L-молочной кислоты, аскорбиновой кислоты, лизина, фенолов, протекающих с участием соответственно липоксиге-назы, лактатоксидазы, аскорбатоксидазы, лизинооксигеназы, о-дифенол-оксидазы. Гидропероксиды, образующиеся в результате действия, например липоксигеназы, самостоятельно осуществляют окисление фенолов, а образующиеся при этом хиноны участвуют в процессах распада аскорбиновой кислоты, аминокислот, взаимодействуют с белками и углеводами, вызывая ухудшение органолептических (потемнение, изменение вкуса, запаха), технологических (набухание, размягчение) свойств и потерю пищевой и биологической ценности (деструкцию незаменимых аминокислот, жирных кислот, витаминов, снижение усвояемости, переварива-емости).
Из гидролаз в овощах, плодах и картофеле обнаружены (З-глюкозида-за, р-фруктофуранозидаза, полигалактуроназа, пектинлиаза, пектатлиа-за, протеолитические и другие ферменты. Инактивация ферментов в результате тепловой обработки при консервировании, сушке и получении натуральных соков из плодов, овощей и ягод предотвращает порчу и сохраняет цвет, вкус и аромат сочного сырья.
В клубнях картофеля, семенах японской редиски, корнях турнепса, зеленом горошке, томатах содержатся белки-ингибиторы животных про-теиназ, в первую очередь трипсина и химотрипсина. По содержанию ингибиторов сочное растительное сырье занимает третье место после бобовых и злаковых. Наиболее хорошо изучены ингибиторы ферментов клубней картофеля. Ингибитор химотрипсина картофеля относится к "арги-ниновому" типу, то есть в участке, который вступает во взаимодействие с активным центром фермента, содержится аргинин. Помимо ингибиторов трипсина и химотрипсина в картофеле обнаружены полипептиды, действующие как ингибиторы карбоксипептидаз А и Б.
- Содержание
- Глава 1. Химия пищевых веществ и питание человека 6
- Глава 2. Белковые вещества 14
- Глава 3. Углеводы 111
- Глава 4. Липиды (жиры и масла) 175
- Глава 5. Минеральные вещества 211
- Глава 6. Витамины 231
- Глава 7. Пищевые кислоты 248
- Глава 8. Ферменты 261
- Глава 9. Пищевые и биологически активные добавки 330
- Глава 10. Вода 444
- Глава 11. Безопасность пищевых продуктов 475
- Глава 12. Основы рационального питания 540
- Предисловие ко второму изданию
- Глава 1. Химия пищевых веществ и питание человека
- Глава 2. Белковые вещества
- 2.1. Белки в питании человека. Проблема белкового дефицита на земле
- 2.2. Белково-калорийная недостаточность и ее последствия. Пищевые аллергии
- 2.3. Аминокислоты и их некоторые функции в организме
- 2.4. Незаменимые аминокислоты. Пищевая и биологическая ценность белков
- 2.5. Строение пептидов и белков. Физиологическая роль пептидов
- 2.6 Белки пищевого сырья
- Белки масличных культур
- Белки картофеля, овощей и плодов
- Белки мяса и молока
- 2.7. Новые формы белковой пищи. Проблема обогащения белков лимитирующими аминокислотами
- 2.8. Функциональные свойства белков
- 2.9. Превращения белков технологическом потоке
- 2.10. Качественное и количественное определение белка
- Контрольные вопросы
- Глава 3. Углеводы
- 3.1. Общая характеристика углеводов
- Моносахариды
- Полисахариды
- 3.2. Физиологическое значение углеводов
- Усваиваемые и неусваиваемые углеводы
- Углеводы в пищевых продуктах
- 3.3. Превращения углеводов при производстве пищевых продуктов Гидролиз углеводов
- Реакции дегидратации и термической деградации углеводов
- Реакции образования коричневых продуктов
- Процессы брожения
- 3.4. Функции моносахаридов и олигосахаридов в пищевых продуктах Гидрофильность
- Связывание ароматических веществ
- Образование продуктов неферментативного потемнения и пищевого аромата
- Сладость
- 3.5. Функции полисахаридов в пищевых продуктах Структурно-функциональные свойства полисахаридов
- Крахмал
- Гликоген
- Целлюлоза
- Гемицеллюлозы
- Пектиновые вещества
- 3.6. Методы определения углеводов в пищевых продуктах
- Контрольные вопросы
- Глава 4. Липиды (жиры и масла)
- 4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
- 4.2. Реакции ацилглицеринов с участием сложноэфирных групп Гидролиз триацилглицеринов
- Переэтерификация
- 4.3. Реакции ацилглицеринов с участием углеводородных радикалов Присоединение водорода (гидрирование ацилглицеринов)
- Окисление ацилглицеринов
- 4.4. Свойства и превращения глицерофосфолипидов
- 4.5. Методы выделения липидов из сырья и пищевых продуктови их анализ
- 4.6. Пищевая ценность масел и жиров
- Контрольные вопросы
- Глава 5. Минеральные вещества
- 5.1. Роль минеральных веществ в организме человека
- 5.2. Роль отдельных минеральных элементов Макроэлементы
- Микроэлементы
- 5.3. Влияние технологической обработки на минеральный состав пищевых продуктов
- 5.4. Методы определения минеральных веществ
- Электрохимические методы анализа
- Контрольные вопросы
- Глава 6. Витамины
- 6.1. Водорастворимые витамины
- 6.2. Жирорастворимые витамины
- 6.3. Витаминоподобные соединения
- 6.4. Витаминизация продуктов питания
- Контрольные вопросы
- Глава 7. Пищевые кислоты
- 7.1. Общая характеристика кислот пищевых объектов
- 7.3. Пищевые кислоты и их влияние на качество продуктов
- 7.4. Регуляторы кислотности пищевых систем
- 7.5. Пищевые кислоты в питании
- 7.6. Методы определения кислот в пищевых продуктах
- Глава 8. Ферменты
- 8.1. Общие свойства ферментов
- Ферментативная кинетика
- 8.2. Классификация и номенклатура ферментов
- Оксидоредуктазы
- Гидролитические ферменты
- 8.3. Применение ферментов в пищевых технологиях
- Мукомольное производство и хлебопечение
- Производство крахмала и крахмалопродуктов
- Кондитерское производство
- Производство плодово-ягодных соков, безалкогольных напитков и вин
- Спиртные напитки и пивоварение
- 8.4. Иммобилизованные ферменты
- 8.5. Ферментативные методы анализа пищевых продуктов
- Глава 9. Пищевые и биологически активные добавки
- 9.1. Общие сведения о пищевых добавках
- Общие подходы к подбору технологических добавок
- О безопасности пищевых добавок
- 9.2. Вещества, улучшающие внешний вид пищевых продуктов
- Цветокорректирующие материалы
- 9.3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов
- Эмульгаторы
- 9.4. Вещества, влияющие на вкус и аромат пищевых продуктов
- Подслащивающие вещества
- Ароматизаторы
- Пищевые добавки, усиливающие и модифицирующие вкус и аромат
- 9.5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья и готовых продуктов
- Консерванты
- Антибиотики
- Пищевые антиокислители
- 9.6. Биологически активные добавки
- Глава 10. Вода
- 10.1. Физические и химические свойства воды и льда Физические свойства воды и льда
- Диаграмма состояния воды
- Строение молекулы и свойства воды
- Взаимодействие вода — растворенное вещество
- Структура и свойства льда
- 10.2. Свободная и связанная влага в пищевых продуктах
- Рассмотрим некоторые примеры.
- 10.3. Активность воды
- Изотермы сорбции
- Активность воды и стабильность пищевых продуктов
- 10.4. Роль льда в обеспечении стабильности пищевых продуктов
- 10.5. Методы определения влаги в пищевых продуктах Определение общего содержания влаги
- Глава 11. Безопасность пищевых продуктов
- 11.1. Классификация чужеродных веществ и пути их поступления в продукты
- 11.2. Окружающая среда - основной источник загрязнения сырья и пищевых продуктов
- Меры токсичности веществ
- Токсичные элементы
- Радиоактивное загрязнение
- Диоксины и диоксинподобные соединения
- Полициклические ароматические углеводороды
- Загрязнения веществами, применяемыми в растениеводстве
- Загрязнение веществами, применяемыми в животноводстве
- 11.3. Природные токсиканты
- Микотоксины
- Методы определения микотоксинов и контроль за загрязнением пищевых продуктов
- 11.4. Антиалиментарные факторы питания
- 11.5. Метаболизм чужеродных соединений
- 11.6. Фальсификация пищевых продуктов Фальсификация: аспект безопасности
- Генетически модифицированные продукты питания
- Контрольные вопросы
- Глава 12. Основы рационального питания
- 12.1. Физиологические аспекты химии пищевых веществ
- 12.2. Питание и пищеварение
- Основные пищеварительные процессы
- Схемы процессов переваривания макронутриентов
- Метаболизм макронутриентов
- 12.3. Теории и концепции питания
- Первый принцип рационального питания
- Второй принцип рационального питания
- Третий принцип рационального питания
- 12.4. Рекомендуемые нормы потребления пищевых веществ и энергии
- 12.5. Пищевой рацион современного человека. Основные группы пищевых продуктов
- 12.6. Концепция здорового питания. Функциональные ингредиенты и продукты
- Список использованной литературы