Пищевые антиокислители
К пищевым антиокислителям (антиоксидантам) относятся вещества, замедляющие окисление в первую очередь ненасыщенных жирных кислот, входящих в состав липидов (функциональный класс 5). Этот класс пищевых добавок включает три подкласса с учетом их отдельных технологических функций: 1) антиокислители; 2) синергисты антиокислителей; 3) комплексообразователи.
Ряд соединений: лецитины — Е322; лактаты — Е325, Е326; Е327 и некоторые другие выполняют комплексные функции. Перечень антиокислителей, разрешенных для применения в РФ (СанПиН 2.3.2.1078—01), приведен ниже:
Аскорбиновая кислота | Е300 | Додецилгаллат | Е312 |
Аскорбат натрия | Е301 | Гваяковая смола | Е314 |
Аскорбат кальция | Е302 | Изоаскорбиновая кислота | Е315 |
Аскорбат калия | ЕЗОЗ | Изоаскорбат натрия | Е316 |
Аскорбилпальмитат | Е304 | Изоаскорбат калия | Е317 |
Аскорбилстеарат | Е305 | Изоаскорбат кальция | Е318 |
Концентрат смеси токоферолов | Е306 | Трет-бутилгидрохинон | Е319 |
Бутилгидроксианизол | Е320 | Альфа-токоферол | Е307 |
Бутилгидрокситолулол | Е321 | Гамма-токоферол синтетический | Е308 |
Лецитины | Е322 | Аноксамер | Е323 |
Дельта-токоферол синтетический | Е309 | Лактат натрия | Е325 |
Лактат калия | Е326 | Пропилгаллат | Е310 |
Лимонная кислота | Е330 | Окрилгаллат | Е311 |
449
Этилендиаминтетраацетат кальция-натрия | Е385 | Оксистеарин | Е387 |
Этилендиаминтетраацетат динатрий | Е386 | Глюкозооксидаза | Е1102 |
|
| Дигидрокверцетин | — |
|
| Кверцетин | — |
Использование антиокислителей дает возможность продлить срок хранения пищевого сырья, полупродуктов и готовых продуктов, защищая их от порчи, вызванной окислением кислородом воздуха.
Окисление масел и жиров — сложный процесс, идущий по радикально-цепному механизму. Начальными (первичными) продуктами окисления являются разнообразные по строению пероксиды и гидропероксиды. Они получили название первичных продуктов окисления. В результате их сложных превращений образуются вторичные продукты окисления: спирты, альдегиды, кетоны и кислоты с различной длиной углеродной цепи, а также их разнообразные производные. На скорость окисления влияют состав пищевых систем, в первую очередь — состав и строение липидной фракции, влажность, температура, наличие металлов переменной валентности, свет.
Действие большинства пищевых антиокислителей основано на их способности образовывать малоактивные радикалы, прерывая тем самым реакцию автоокисления.
Вещества, усиливающие действие антиокислителей, — синергисты — сами обычно не обладают антиокислительными свойствами. К ним относятся вещества, инактивирующие ионы тяжелых металлов с образованием комплексных соединений. В пищевых системах обычно протекает комплекс реакций, при этом синергисты могут проявлять свойства подлинных антиокислителей.
В общем виде механизм окисления жиров и действия антиокислителей может быть представлен следующим образом: свободный радикал R', образовавшийся из жирной кислоты или ее ацила, под влиянием ряда факторов, взаимодействуя с кислородом, образует пероксид-радикал
R' + O2→ ROO'
способный к взаимодействию с другой ненасыщенной жирной кислотой или ее ацилом R—H; при этом образуется новый свободный радикал и гидропероксид
ROO' + RH → ROOH + R'
Медленно протекающие на начальном этапе реакции по мере накопления гидропероксидов и их распада с образованием новых радикалов резко ускоряются:
450
2ROOH → ROO' + RO' + H2O
Введение антиоксиданта (АН) приводит к образованию новых радикалов А', отличающихся значительно большей стабильностью, чем радикалы R', что приводит к замедлению реакции, а в конечном итоге, при определенных условиях, к ее резкому торможению:
АН + R' → A' +RH
АН + ROO' → ROOH + А'
А' + R' → AR
Механизм действия конкретного антиокислителя представлен на рис. 9.12.
Рис. 9.12. Механизм действия антиокислителя: 1 — антиоксидант; 2,4 — фрагмент свободного радикала жирной кислоты, 3,5 — малоактивные радикалы, прерывающие цель окисления
Синергисты SH2обладают способностью восстанавливать радикалы А', не реагируя с радикалами ROO'
SH2+ 2А → S + 2АН
451
Из природных антиокислителей необходимо, в первую очередь, отметить токоферолы (Е306—Е309), которые присутствуют в ряде растительных масел.
Токоферолы в виде смеси изомеров содержатся в растительных жирах (500—100 мг%): масле пшеничных зародышей, кукурузном, подсолнечном и других; в животных жирах их содержание невысоко. Из смеси токоферолов наибольшую E-витаминную и наименьшую анти-оксидантную активность проявляет α-токоферол, γ-токоферол — наоборот.
Токоферолы хорошо растворимы в маслах, устойчивы к действию высоких температур, их потери при технологической обработке не велики. Они являются важнейшими природными антиоксидантами.
Аскорбиновая кислота ЕЗОО, ее натриевая Е301, кальциевая Е302 и калиевая ЕЗОЗ соли применяются в качестве антиокислителей и синергистов при производстве различных пищевых продуктов.
Аскорбиновая кислота применяется для предотвращения окислительной порчи жировых продуктов, в частности маргарина, топленых жиров, действуя не непосредственно как антиоксидант, а, являясь в первую очередь синергистом, — восстанавливая фенольные соединения и связывая металлы.
Введение водорастворимых аскорбиновой кислоты и ее солей в жировые и другие пищевые продукты повышает, кроме того, их пищевую ценность.
Производные аскорбиновой кислоты — аскорбилпальмитат Е304 и аскорбилстеарат ЕЗОЗ — жирорастворимые антиоксиданты с С-витаминной активностью.
452
Эфиры аскорбиновой кислоты и высокомолекулярных жирных кислот эффективны при совместном использовании с лецитинами, токоферолами. Не влияют на вкус, запах и цвет пищевых продуктов.
Изоаскорбиновая (эриторбовая) кислота Е315 и ее натриевая, калиевая и кальциевая соли (Е316, Е317, ЕЗ18) имеют более ограниченное применение, чем аскорбиновая кислота и ее производные. Не обладают витаминной активностью. Эриторбовая кислота и ее соли применяются в мясных продуктах из измельченного мяса, ветчинных изделиях, консервах. Максимальный уровень содержания в этих продуктах 500 мг в кг; в рыбных пресервах и консервах— 1500 мг/кг в пересчете на кислоту.
Производные галловой кислоты: пропилгаллат Е310, октилгаллат ЕЗ 11, додецилгаллат Е312.
Пропилгаллат — белый или светло-кремовый мелкокристаллический порошок без запаха, горьковатый на вкус. В присутствии ионов железа цвет
453
меняется на сине-фиолетовый, окраска устраняется добавлением лимонной кислоты. Плохо растворим в жирах. Октил- и додецилгаллаты — кристаллические вещества с горьким вкусом, растворимы в жирах и маслах, нерастворимы в воде. Производные галловой кислоты — хорошие анти-оксиданты. Основные синергисты— лецитин и лимонная кислота.
Галлаты применяются при производстве растительных и животных масел (используемых в приготовлении пищевых продуктов с применением высоких температур), кулинарных жиров, лярда, животного и рыбьего жиров, сухого молока, сухих смесей для тортов и кексов, сухих завтраков на зерновой основе, бульонных кубиков.
Гваяковая смола (Е314) — нерастворимая в воде смесь альфа-, бета-гваяковых кислот. Выделяется из произрастающего в тропиках дерева Guajacum offinales L или Guajacum sanctum L. Применяется для стабилизации животных жиров.
Широкое применение в качестве антиоксидантов нашли производные фенолов: трет-бутилгидрохинон; бутилгидроксианизол; бутилгид-рокситолуол.
трет-Бутилгидрохинон(ТБГХ; TBHQ;2-третбутил-1,4 диоксибензол) Е319. Бесцветное кристаллическое вещество, хороший антиоксидант, применяется для стабилизации растительных жиров, топленого масла, кулинарных жиров.
Бутилгидроксианизол (БОА; ВНА) Е320. Состоит из смеси двух изомеров: 2- и З-третбутил-4-гидроксианизолов. Один из наиболее часто применяемых антиоксидантов. Устойчив к высоким температурам, не растворим в воде. Применяется для стабилизации масел и жиров, топленых жиров, шпика соленого, сухого молока, смесей для кексов, концентратов супов. Активность возрастает в присутствии производных галловой кислоты, лимонной кислоты, аскорбиновой кислоты.
Бутилгидрокситолуол (ионол; ВНТ; БОТ) Е321 один из наиболее распространенных синтетических антиокислителей. Он применяется для
454
стабилизации растительных масел, топленого жира, кулинарных жиров. Ионол термостабилен и не разрушается при выпечке изделий, обработке конфетных масс.
Использование производных фенолов в производстве жиров позволяет значительно повысить их стойкость. Так, внесение бутилгидроксианизола в количестве 0,01% от массы лярда повышает его стойкость в 5—13 раз, внесение ионола в кулинарный жир повышает его стойкость в 10—12 раз. Производные фенолов вносятся в пищевые продукты исключительно в малых количествах, их эффективность тем больше, чем длинней индукционный период окисления. В то же время следует помнить, что все они задерживают процесс окисления жиров только ограниченное время.
Аноксомер Е323. Применяется для стабилизации топленого и растительных масел, кулинарных жиров. Термостабилен. Разрешен для применения в России.
Лецитины Е322. Антиокислители, эмульгаторы. Их строение и свойства были подробно рассмотрены ранее. Лецитины являются антиоксидантами и синергистами окисления масел и жиров.
Лактат натрия Е325 — синергист антиокислителя, влагоудерживающий агент; лактат калия Е326 — синергист антиокислителя, регулятор кислотности. Лактаты применяются в кондитерском производстве, при производстве мороженого.
Этилендиаминтетраацетат кальция-натрия Е385 — антиокислитель, консервант, комплексообразователь и Этилендиаминтетраацетат динатрий (трилон) Е386 — антиокислитель, консервант, синергист, комплексообразователь.
Соли этилендиаминтетрауксусной кислоты (ЭДТА) — это хорошие комплексообразователи, способные создавать стабильные комплексы с металлами, что позволяет использовать их для связывания следовых количеств металлов. Предупреждают окисление аскорбиновой кислоты в соках, потемнение картофеля, применяются для осветления вина. Стабильность комплексов ионов металлов с ЭДТА можно представить в виде следующего ряда:
Na+ < Са++ < Fe++< Co++< Zn++< Cu++< Pb++ < Fe+++
455
Кверцетин, дигидрокверцетин — производные флавонов, получают из коры дуба, лиственницы и из некоторых других растений. Обладают сильными антиокислительными свойствами, которые усиливаются в присутствии лимонной и аскорбиновой кислот. Применяются при изготовлении специальных жиросодержащих продуктов, для пропитки упаковочных материалов.
Лимонная кислота ЕЗЗО и ее соли — цитраты натрия Е331 (одно-, двух- и трехзамещенные), калия Е332 (двух- и трехзамещенный), кальция ЕЗЗЗ являются регуляторами кислотности, стабилизаторами и комплексообразователями.
Действие лимонной кислоты и ее солей основано на их способности связывать металлы с образованием хелатных соединений. Лимонная кислота обладает приятным, мягким вкусом; применяется в производстве плавленых сыров, кондитерских изделий, майонезов, маргаринов, рыбных консервов.
Винная кислота Е334 — синергист антиокислителей, комплексообразователь, соли винной кислоты — тартраты Е335, Е336, Е337 — комп-лексообразователи.
Глюкозооксидаза Е1102 — ферментный препарат, применяемый в качестве антиоксиданта.
Антиокислительные свойства проявляют также некоторые пряности и их экстракты: анис, кардамон, кориандр, укроп, фенхель, имбирь, красный перец. Некоторые из них повышают стойкость жиров в два, три раза.
456
449::450::451::452::453::454::455::456::Содержание
456::457::458::459::460::Содержание
- Содержание
- Глава 1. Химия пищевых веществ и питание человека 6
- Глава 2. Белковые вещества 14
- Глава 3. Углеводы 111
- Глава 4. Липиды (жиры и масла) 175
- Глава 5. Минеральные вещества 211
- Глава 6. Витамины 231
- Глава 7. Пищевые кислоты 248
- Глава 8. Ферменты 261
- Глава 9. Пищевые и биологически активные добавки 330
- Глава 10. Вода 444
- Глава 11. Безопасность пищевых продуктов 475
- Глава 12. Основы рационального питания 540
- Предисловие ко второму изданию
- Глава 1. Химия пищевых веществ и питание человека
- Глава 2. Белковые вещества
- 2.1. Белки в питании человека. Проблема белкового дефицита на земле
- 2.2. Белково-калорийная недостаточность и ее последствия. Пищевые аллергии
- 2.3. Аминокислоты и их некоторые функции в организме
- 2.4. Незаменимые аминокислоты. Пищевая и биологическая ценность белков
- 2.5. Строение пептидов и белков. Физиологическая роль пептидов
- 2.6 Белки пищевого сырья
- Белки масличных культур
- Белки картофеля, овощей и плодов
- Белки мяса и молока
- 2.7. Новые формы белковой пищи. Проблема обогащения белков лимитирующими аминокислотами
- 2.8. Функциональные свойства белков
- 2.9. Превращения белков технологическом потоке
- 2.10. Качественное и количественное определение белка
- Контрольные вопросы
- Глава 3. Углеводы
- 3.1. Общая характеристика углеводов
- Моносахариды
- Полисахариды
- 3.2. Физиологическое значение углеводов
- Усваиваемые и неусваиваемые углеводы
- Углеводы в пищевых продуктах
- 3.3. Превращения углеводов при производстве пищевых продуктов Гидролиз углеводов
- Реакции дегидратации и термической деградации углеводов
- Реакции образования коричневых продуктов
- Процессы брожения
- 3.4. Функции моносахаридов и олигосахаридов в пищевых продуктах Гидрофильность
- Связывание ароматических веществ
- Образование продуктов неферментативного потемнения и пищевого аромата
- Сладость
- 3.5. Функции полисахаридов в пищевых продуктах Структурно-функциональные свойства полисахаридов
- Крахмал
- Гликоген
- Целлюлоза
- Гемицеллюлозы
- Пектиновые вещества
- 3.6. Методы определения углеводов в пищевых продуктах
- Контрольные вопросы
- Глава 4. Липиды (жиры и масла)
- 4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
- 4.2. Реакции ацилглицеринов с участием сложноэфирных групп Гидролиз триацилглицеринов
- Переэтерификация
- 4.3. Реакции ацилглицеринов с участием углеводородных радикалов Присоединение водорода (гидрирование ацилглицеринов)
- Окисление ацилглицеринов
- 4.4. Свойства и превращения глицерофосфолипидов
- 4.5. Методы выделения липидов из сырья и пищевых продуктови их анализ
- 4.6. Пищевая ценность масел и жиров
- Контрольные вопросы
- Глава 5. Минеральные вещества
- 5.1. Роль минеральных веществ в организме человека
- 5.2. Роль отдельных минеральных элементов Макроэлементы
- Микроэлементы
- 5.3. Влияние технологической обработки на минеральный состав пищевых продуктов
- 5.4. Методы определения минеральных веществ
- Электрохимические методы анализа
- Контрольные вопросы
- Глава 6. Витамины
- 6.1. Водорастворимые витамины
- 6.2. Жирорастворимые витамины
- 6.3. Витаминоподобные соединения
- 6.4. Витаминизация продуктов питания
- Контрольные вопросы
- Глава 7. Пищевые кислоты
- 7.1. Общая характеристика кислот пищевых объектов
- 7.3. Пищевые кислоты и их влияние на качество продуктов
- 7.4. Регуляторы кислотности пищевых систем
- 7.5. Пищевые кислоты в питании
- 7.6. Методы определения кислот в пищевых продуктах
- Глава 8. Ферменты
- 8.1. Общие свойства ферментов
- Ферментативная кинетика
- 8.2. Классификация и номенклатура ферментов
- Оксидоредуктазы
- Гидролитические ферменты
- 8.3. Применение ферментов в пищевых технологиях
- Мукомольное производство и хлебопечение
- Производство крахмала и крахмалопродуктов
- Кондитерское производство
- Производство плодово-ягодных соков, безалкогольных напитков и вин
- Спиртные напитки и пивоварение
- 8.4. Иммобилизованные ферменты
- 8.5. Ферментативные методы анализа пищевых продуктов
- Глава 9. Пищевые и биологически активные добавки
- 9.1. Общие сведения о пищевых добавках
- Общие подходы к подбору технологических добавок
- О безопасности пищевых добавок
- 9.2. Вещества, улучшающие внешний вид пищевых продуктов
- Цветокорректирующие материалы
- 9.3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов
- Эмульгаторы
- 9.4. Вещества, влияющие на вкус и аромат пищевых продуктов
- Подслащивающие вещества
- Ароматизаторы
- Пищевые добавки, усиливающие и модифицирующие вкус и аромат
- 9.5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья и готовых продуктов
- Консерванты
- Антибиотики
- Пищевые антиокислители
- 9.6. Биологически активные добавки
- Глава 10. Вода
- 10.1. Физические и химические свойства воды и льда Физические свойства воды и льда
- Диаграмма состояния воды
- Строение молекулы и свойства воды
- Взаимодействие вода — растворенное вещество
- Структура и свойства льда
- 10.2. Свободная и связанная влага в пищевых продуктах
- Рассмотрим некоторые примеры.
- 10.3. Активность воды
- Изотермы сорбции
- Активность воды и стабильность пищевых продуктов
- 10.4. Роль льда в обеспечении стабильности пищевых продуктов
- 10.5. Методы определения влаги в пищевых продуктах Определение общего содержания влаги
- Глава 11. Безопасность пищевых продуктов
- 11.1. Классификация чужеродных веществ и пути их поступления в продукты
- 11.2. Окружающая среда - основной источник загрязнения сырья и пищевых продуктов
- Меры токсичности веществ
- Токсичные элементы
- Радиоактивное загрязнение
- Диоксины и диоксинподобные соединения
- Полициклические ароматические углеводороды
- Загрязнения веществами, применяемыми в растениеводстве
- Загрязнение веществами, применяемыми в животноводстве
- 11.3. Природные токсиканты
- Микотоксины
- Методы определения микотоксинов и контроль за загрязнением пищевых продуктов
- 11.4. Антиалиментарные факторы питания
- 11.5. Метаболизм чужеродных соединений
- 11.6. Фальсификация пищевых продуктов Фальсификация: аспект безопасности
- Генетически модифицированные продукты питания
- Контрольные вопросы
- Глава 12. Основы рационального питания
- 12.1. Физиологические аспекты химии пищевых веществ
- 12.2. Питание и пищеварение
- Основные пищеварительные процессы
- Схемы процессов переваривания макронутриентов
- Метаболизм макронутриентов
- 12.3. Теории и концепции питания
- Первый принцип рационального питания
- Второй принцип рационального питания
- Третий принцип рационального питания
- 12.4. Рекомендуемые нормы потребления пищевых веществ и энергии
- 12.5. Пищевой рацион современного человека. Основные группы пищевых продуктов
- 12.6. Концепция здорового питания. Функциональные ингредиенты и продукты
- Список использованной литературы