Белки мяса и молока
Мясо, молоко и получаемые из них продукты содержат необходимые организму белки, которые благоприятно сбалансированы и хорошо усваиваются. Белки мышечной ткани мяса животных полноценны, по сбалансированности аминокислот говядина, баранина и свинина мало отличаются друг от друга. Белки соединительной ткани и хрящей являются неполноценными. В организме человека и животных белки мышц выполняют сократительную функцию, белки соединительной ткани и хрящей - структурную. Функции всех этих видов белков основаны на их фибриллярной природе.
Содержание белка в мясных продуктах колеблется от 11 до 22%. Главными мышечными белками являются миозин и актин, молекулярная функция которых заключается в обеспечении механизма мышечного сокращения и расслабления при участии АТФ. Миозин по массе составляет 55% мышечного белка и представляет собой гексамер с молекулярной массой 460 кД. Гексамер включает фибриллярную часть (две переплетенные а-спирали с молекулярной массой 200 кД, заканчивающиеся глобулярными "головками"), тяжелые цепи и две пары легких цепей (молекулярная масса 15-27 кД). Миозин обладает АТФ-гидро-лизующей активностью и способностью связываться с нерастворимым F-актином. Актин - это мономерный глобулярный белок с молекулярной массой 43 кД (G-актин), на долю которого приходится 25% общей массы мышечного белка. В присутствии магния G-актин подвергается нековалентной полимеризации с образованием двойной спиральной цепочки, получившей название F-актина. Мышечное сокращение заключается в повторяющихся присоединениях и отсоединениях глобулярной "головки" миозина от нити F-актина. Гидролиз АТФ запускает цикл ассоциации и диссоциации актина и миозина в пяти реакциях данного процесса (рис. 2.16).
Сущность же процесса расслабления мышцы заключается в отделении миозиновой (АТФ) головки от F-актина.
В мышечных клетках содержится глобулярный водора створимый хромопротеид миоглобин, имеющий в качестве простетической группы гем-циклический тетрапиррол, присутствием которого объясняется красный цвет этого белка. Тетрапирролы состоят из четырех молекул пиррола, связанных четырьмя а-метиленовыми мостиками с образованием плоской кольцевой структуры. В центре плоского кольца находится один атом железа в ферро-состоянии (Fe2+), окисление которого приводит к потере биологической активности миоглобина.
Биологическая функция миоглобина заключается не в транспортировании кислорода, как у гемоглобина, а в его запасании. В условиях кислородного голодания (например, при физической нагрузке) кислород высвобождается из комплекса с миоглобином и поступает в митохондрии мышечных клеток, где осуществляется синтез АТФ (окислительное фосфорил ирование).
На примере миоглобина хорошо изучена взаимосвязь функции глобулярного белка и его структуры. Миоглобин состоит из одной полипептидной цепи с молекулярной массой 17 кД, включающей 153 остатка аминокислот. Примерно 75% остатков образуют восемь правых α-спиралей, уложенных в компактную сферическую молекулу. В местах изгиба полипептидной цепи расположены остатки пролина, серина, треонина, которые не способны к образованию α-спирали. На поверхности молекулы находятся полярные остатки, а внутри - неполярные, если не считать двух остатков гистидина, принимающих участие в связывании кислорода. Присоединение кислорода к миоглобину сопровождается смещением атома железа, а вместе с ним гистидина, и ковалентно связанных других остатков аминокислот в направлении плоскости гемового кольца. В результате эта область белковой молекулы принимает новую конформацию.
Миоглобин, не связанный с кислородом, называют дезоксимиогло-бином (Mb), оксигемированный Mb называют оксимиоглобином (МЬО2). Окраска мясопродуктов зависит от содержания миоглобина, состояния тема и белковой части макроглобулы. Окисление Fe2+в миоглобине до Fe3+приводит к изменению окраски пигмента от ярко-красного до темно-коричневого, так как образующийся метмиоглобин (MetMb) теряет способность связывать молекулярный кислород. Тепловая денатурация глобина также приводит к потере способности гемового пигмента связывать кислород и ухудшает цвет изделий.
Кислород миоглобина может замещаться такими лигандами, как оксид азота, оксид углерода и др., поэтому данное свойство белка мышечной ткани мяса используется для получения интенсивной окраски мясопродуктов. Нитрит (NO), применяемый для этой цели, вступая в реакцию с миоглобином, образует нитрозомиоглобин, переходящий при нагревании в устойчивый пигмент красного цвета нитрозомиохромоген:
Миоглобин и его производные имеют разные спектральные характеристики, поэтому для их идентификации при оценке качества мяса применяют спектрофотометрические методы анализа.
Наиболее распространенным белком в животном мире является коллаген - главная макромолекула кожи, сухожилий, кровеносных сосудов, костей, роговицы глаза и хрящей. Он обеспечивает внеклеточную структуру в соединительной животной ткани, существуя не менее чем в пяти различных типах. Главной особенностью коллагеновых молекул является трехспиральная структура, каждая а-цепь (субъединица) которой представляет левозакрученную спираль. В спирали на каждый виток приходится по три аминокислотных остатка. Три левые а-спира-ли закручиваются в правые суперспирали, которые в свою очередь объединяются в фибриллы.
Еще одной характерной особенностью молекулы коллагена является наличие в ее составе в качестве третьего остатка тройной спирали а-цепи глицина. Повторяющуюся структуру можно представить как 1ли-X--Y, где X, Y - другие аминокислоты. Около 100 Х- и 100 Y-положений в коллагене занято пролином и 4-гидроксипролином, соответственно (см. Аминокислоты и их некоторые функции в организме). В некоторых Х-положениях содержится 3-гидроксипролин, а в Y - 5-гидроксилизин. Остатки "жестких" аминокислот увеличивают стабильность тройной спирали. По количеству оксипролина определяют степень развариваемости коллагена при оценке качества мяса.
Коллаген - внеклеточный белок, но он синтезируется внутри клетки в виде молекул-предшественников, проходя через эндоплазматический ретикулум и комплекс Гольджи. В результате процесса посттрансляционной модификации тройная спираль коллагена стабилизируется между внутрицепочными дисульфидными связями, о-гликозидными связями между остатками сахаридов и гидроксилизина и перекрестным связыванием цепей и спиральных молекул фибрилл через Шиффовы основания (см. гл. 3) и альдольную конденсацию.
Близкий по свойствам к коллагену, в эластичных фибриллах соединительной ткани обнаружен белок эластин, содержащийся в связках и стенках кровеносных сосудов. Этот белок богат глицином, аланином и лизином, но беден пролином. Отличительной особенностью эластина является наличие в его структуре поперечных связей необычного характера. Альдегидные группы, возникшие в результате окисления аминогрупп боковых цепей остатков лизина и оксилизина, взаимодействуют с аминогруппой лизина при помощи реакций альдольной конденсации, дегидратации и окисления, образуя десмозин и изодесмозин. Все четыре аминогруппы и карбоксильные группы участвуют в образовании пептидных связей.
Мясо, содержащее много соединительной ткани, остается жестким и после тепловой обработки; усвояемость коллагена и эластина в нем очень низкая. Однако при необходимости усиления двигательной функции кишечника целесообразно использование продуктов, богатых соединительной тканью. В диетах щадящего режима применяют желатин - продукт неполного гидролиза коллагена. По аминокислотному составу желатин неполноценен, но желеобразные продукты из него перевариваются без напряжения секреции пищеварительных органов.
Молоко - это гетерогенная система, в которой в качестве дисперсной фазы выступают эмульгированные жировые глобулы и коллоидные мицеллы казеина, а в роли дисперсионной среды - раствор белков, лактозы, солей и витаминов. Общее содержание белков в молоке колеблется от 2,9 до 3,5%. Среди них выделяются две основные группы: казенны и сывороточные белки (табл. 2.12). В молоке содержится более 20 ферментов (ксантиноксидаза, пероксидаза, каталаза, липаза, холинэстераза,
α-амилаза, лизоцим, протеаза и др.), а также гормоны (пролактин, окси-тоцин, кортикостероиды, тироксин, трииодтиронин и др.) и белки в составе оболочек жировых шариков.
Основными белками молока являются казенны, которые легко перевариваются и являются источниками незаменимых аминокислот, кальция, фосфора и ряда физиологически активных пептидов. Так, при действии в желудке на k-казеин химозина высвобождаются глико- и фосфопептиды, которые регулируют секрецию желудочного сока, моделируют физико-химические свойства белков (растворимость, вязкость, заряд, денатурацию), осуществляют защиту от про-теолиза и влияют на проницаемость мембран клеток. Важнейшими физиологическими функциями обладают и сывороточные белки. Иммуноглобулины выполняют защитную функцию, лактоферрин и лизоцим (фермент) являются носителями антибактериальных свойств, а лактоферрин и β-лактоглобулин выполняют транспортную роль, перенося в кишечник микро- и макроэлементы, витамины и липиды. α-Лактальбумин необходим для синтеза лактозы в молоке из УДФ-галактозы и глюкозы.
Для большинства компонентов казеина, α-лактальбумина, β-лактоглобулина и компонентов протеозо-пептонной фракции расшифрованы первичные и некоторые фрагменты вторичной, третичной и четвертичной структуры. Так, молекулы казеина имеют небольшое количество α-спиралей - 1-6% (тогда как, например, а-лактальбумин состоит из 26% α-спирали, β-конформации) и только остальное количество белка представляет собой неупорядоченную структурную организацию. При образовании четвертичной структуры казеина большая роль отводится гидрофобным взаимодействиям и фосфат-кальциевым мостикам и меньшая - электростатическим и водородным связям. Фосфаткальциевые мостики являются основой казеинаткальциевого фосфатного комплекса, в виде которого и содержится казеин в молоке:
Кальций в составе комплекса выполняет роль структурообразовате-ля, создавая мостик между серинфосфатными группами двух молекул казеина, а остатки фосфорной кислоты усиливают кислые свойства белка, обусловленные присутствием в полипептидах β- и γ-карбоксильных групп аспараги новой и глутаминовой кислот. Казеин из молока осаждается при рН 4,6-4,7, когда на его молекулах наступает равенство положительных и отрицательных зарядов. Осажденный казеин практически не растворяется в воде, но растворяется в слабощелочной среде и растворах солей щелочных металлов и минеральных кислот. Нерастворимый казеин обладает способностью связывать воду в достаточно больших количествах (более 2 г на 1 г белка), что очень важно для устойчивости частиц белка в сыром, пастеризованном или стерилизованном молоке. Гидрофильные свойства казеина усиливаются при взаимодействии его с р-лактоглобулином, которое наблюдается в процессе тепловой обработки молока, и от них зависят структурно-механические свойства сгустков, образующихся при кислотном свертывании или получении сырной массы при созревании сыров.
Промышленные казенны получают из обезжиренного молока действием кислот, кисломолочной сыворотки, введением солей кальция, химозина или других ферментов. В зависимости от способа получения различают казеинат натрия, казеинат кальция, кислотный, сычужный казеин и копреципитат с разными функциональными свойствами. Для регулирования последних часто используют неполный ферментативный гидролиз или смешение с растительными белками и их совместную сушку. При производстве новых форм белковой пищи (аналогов мясных и рыбных продуктов) большое значение имеет гелеобразование казеина, его взаимодействие с веществами небелковой природы, образование стойких эмульсий и явление синерезиса.
Белки молока характеризуются высокой биологической ценностью, они содержат в избыточных количествах лизин и триптофан с одновременным недостатком серосодержащих аминокислот (см. Пищевая и биологическая ценность белков). Белки сыворотки содержат незаменимые аминокислоты в значительно больших количествах, чем казеин, включая лизин, треонин, триптофан, метионин и цистеин.
На долю сывороточных белков от общего количества белков в молоке приходится 0,5-0,8%. β-Лактоглобулин устойчив в кислой среде желудка к действию пепсина, поэтому расщепляется только в кишечнике трипсином и химотрипсином. В процессе пастеризации молока белок денатурируется, образуя комплексы с к-казеином, и осаждается вместе с ним при кислотной и сычужной коагуляции. Податливость данного комплекса действию сычужного фермента понижается. α-Лактальбумин не осаждается в изоэлектрической точке (рН 4,6), не свертывается под действием сычужного фермента и термостабилен в силу большого количества дисульфидных связей. Иммуноглобулины по химической природе являются гликопротеидами. Они выполняют свою функцию, вызывая агглютинацию микроорганизмов и других чужеродных клеток. Выделены три основные группы иммуноглобулинов: G, А и М. Среди них имеются мономеры и полимеры, состоящие из тяжелых и легких полипептидных цепей с молекулярной массой 50 кД и 25 кД, соответственно.
Различают два основных типа молочной сыворотки: сладкую, образующуюся при производстве сыров, и кислую, получаемую при осаждении творога и казеинов. Для применения молочной сыворотки в качестве добавок в хлебопекарной, кондитерской промышленности, для производства смесей для детского питания ее концентрируют методами сушки, ультрафильтрации, электродиализом и осаждением белка в виде комплексов с полиэлектролитами. Для получения изолятов, концентратов и копреципитатов применяют термоденатурацию с последующим осаждением белка в ИЭТ (рН 4,5-4,6) и комплексообразование с анионными полисахаридами (КМЦ, альги-наты и пектины). Эти способы позволяют выделять до 70-90% полноценного белка молочной сыворотки и варьировать его функциональные свойства.
- Содержание
- Глава 1. Химия пищевых веществ и питание человека 6
- Глава 2. Белковые вещества 14
- Глава 3. Углеводы 111
- Глава 4. Липиды (жиры и масла) 175
- Глава 5. Минеральные вещества 211
- Глава 6. Витамины 231
- Глава 7. Пищевые кислоты 248
- Глава 8. Ферменты 261
- Глава 9. Пищевые и биологически активные добавки 330
- Глава 10. Вода 444
- Глава 11. Безопасность пищевых продуктов 475
- Глава 12. Основы рационального питания 540
- Предисловие ко второму изданию
- Глава 1. Химия пищевых веществ и питание человека
- Глава 2. Белковые вещества
- 2.1. Белки в питании человека. Проблема белкового дефицита на земле
- 2.2. Белково-калорийная недостаточность и ее последствия. Пищевые аллергии
- 2.3. Аминокислоты и их некоторые функции в организме
- 2.4. Незаменимые аминокислоты. Пищевая и биологическая ценность белков
- 2.5. Строение пептидов и белков. Физиологическая роль пептидов
- 2.6 Белки пищевого сырья
- Белки масличных культур
- Белки картофеля, овощей и плодов
- Белки мяса и молока
- 2.7. Новые формы белковой пищи. Проблема обогащения белков лимитирующими аминокислотами
- 2.8. Функциональные свойства белков
- 2.9. Превращения белков технологическом потоке
- 2.10. Качественное и количественное определение белка
- Контрольные вопросы
- Глава 3. Углеводы
- 3.1. Общая характеристика углеводов
- Моносахариды
- Полисахариды
- 3.2. Физиологическое значение углеводов
- Усваиваемые и неусваиваемые углеводы
- Углеводы в пищевых продуктах
- 3.3. Превращения углеводов при производстве пищевых продуктов Гидролиз углеводов
- Реакции дегидратации и термической деградации углеводов
- Реакции образования коричневых продуктов
- Процессы брожения
- 3.4. Функции моносахаридов и олигосахаридов в пищевых продуктах Гидрофильность
- Связывание ароматических веществ
- Образование продуктов неферментативного потемнения и пищевого аромата
- Сладость
- 3.5. Функции полисахаридов в пищевых продуктах Структурно-функциональные свойства полисахаридов
- Крахмал
- Гликоген
- Целлюлоза
- Гемицеллюлозы
- Пектиновые вещества
- 3.6. Методы определения углеводов в пищевых продуктах
- Контрольные вопросы
- Глава 4. Липиды (жиры и масла)
- 4.1. Строение и состав липидов. Жирнокислотный состав масел и жиров
- 4.2. Реакции ацилглицеринов с участием сложноэфирных групп Гидролиз триацилглицеринов
- Переэтерификация
- 4.3. Реакции ацилглицеринов с участием углеводородных радикалов Присоединение водорода (гидрирование ацилглицеринов)
- Окисление ацилглицеринов
- 4.4. Свойства и превращения глицерофосфолипидов
- 4.5. Методы выделения липидов из сырья и пищевых продуктови их анализ
- 4.6. Пищевая ценность масел и жиров
- Контрольные вопросы
- Глава 5. Минеральные вещества
- 5.1. Роль минеральных веществ в организме человека
- 5.2. Роль отдельных минеральных элементов Макроэлементы
- Микроэлементы
- 5.3. Влияние технологической обработки на минеральный состав пищевых продуктов
- 5.4. Методы определения минеральных веществ
- Электрохимические методы анализа
- Контрольные вопросы
- Глава 6. Витамины
- 6.1. Водорастворимые витамины
- 6.2. Жирорастворимые витамины
- 6.3. Витаминоподобные соединения
- 6.4. Витаминизация продуктов питания
- Контрольные вопросы
- Глава 7. Пищевые кислоты
- 7.1. Общая характеристика кислот пищевых объектов
- 7.3. Пищевые кислоты и их влияние на качество продуктов
- 7.4. Регуляторы кислотности пищевых систем
- 7.5. Пищевые кислоты в питании
- 7.6. Методы определения кислот в пищевых продуктах
- Глава 8. Ферменты
- 8.1. Общие свойства ферментов
- Ферментативная кинетика
- 8.2. Классификация и номенклатура ферментов
- Оксидоредуктазы
- Гидролитические ферменты
- 8.3. Применение ферментов в пищевых технологиях
- Мукомольное производство и хлебопечение
- Производство крахмала и крахмалопродуктов
- Кондитерское производство
- Производство плодово-ягодных соков, безалкогольных напитков и вин
- Спиртные напитки и пивоварение
- 8.4. Иммобилизованные ферменты
- 8.5. Ферментативные методы анализа пищевых продуктов
- Глава 9. Пищевые и биологически активные добавки
- 9.1. Общие сведения о пищевых добавках
- Общие подходы к подбору технологических добавок
- О безопасности пищевых добавок
- 9.2. Вещества, улучшающие внешний вид пищевых продуктов
- Цветокорректирующие материалы
- 9.3. Вещества, изменяющие структуру и физико-химические свойства пищевых продуктов
- Эмульгаторы
- 9.4. Вещества, влияющие на вкус и аромат пищевых продуктов
- Подслащивающие вещества
- Ароматизаторы
- Пищевые добавки, усиливающие и модифицирующие вкус и аромат
- 9.5. Пищевые добавки, замедляющие микробиологическую и окислительную порчу пищевого сырья и готовых продуктов
- Консерванты
- Антибиотики
- Пищевые антиокислители
- 9.6. Биологически активные добавки
- Глава 10. Вода
- 10.1. Физические и химические свойства воды и льда Физические свойства воды и льда
- Диаграмма состояния воды
- Строение молекулы и свойства воды
- Взаимодействие вода — растворенное вещество
- Структура и свойства льда
- 10.2. Свободная и связанная влага в пищевых продуктах
- Рассмотрим некоторые примеры.
- 10.3. Активность воды
- Изотермы сорбции
- Активность воды и стабильность пищевых продуктов
- 10.4. Роль льда в обеспечении стабильности пищевых продуктов
- 10.5. Методы определения влаги в пищевых продуктах Определение общего содержания влаги
- Глава 11. Безопасность пищевых продуктов
- 11.1. Классификация чужеродных веществ и пути их поступления в продукты
- 11.2. Окружающая среда - основной источник загрязнения сырья и пищевых продуктов
- Меры токсичности веществ
- Токсичные элементы
- Радиоактивное загрязнение
- Диоксины и диоксинподобные соединения
- Полициклические ароматические углеводороды
- Загрязнения веществами, применяемыми в растениеводстве
- Загрязнение веществами, применяемыми в животноводстве
- 11.3. Природные токсиканты
- Микотоксины
- Методы определения микотоксинов и контроль за загрязнением пищевых продуктов
- 11.4. Антиалиментарные факторы питания
- 11.5. Метаболизм чужеродных соединений
- 11.6. Фальсификация пищевых продуктов Фальсификация: аспект безопасности
- Генетически модифицированные продукты питания
- Контрольные вопросы
- Глава 12. Основы рационального питания
- 12.1. Физиологические аспекты химии пищевых веществ
- 12.2. Питание и пищеварение
- Основные пищеварительные процессы
- Схемы процессов переваривания макронутриентов
- Метаболизм макронутриентов
- 12.3. Теории и концепции питания
- Первый принцип рационального питания
- Второй принцип рационального питания
- Третий принцип рационального питания
- 12.4. Рекомендуемые нормы потребления пищевых веществ и энергии
- 12.5. Пищевой рацион современного человека. Основные группы пищевых продуктов
- 12.6. Концепция здорового питания. Функциональные ингредиенты и продукты
- Список использованной литературы